实现 pow(x, n) ,即计算 x 的整数 n 次幂函数(即,x^n )。
示例 1:
输入:x = 2.00000, n = 10
输出:1024.00000
示例 2:
输入:x = 2.10000, n = 3
输出:9.26100
示例 3:
输入:x = 2.00000, n = -2
输出:0.25000
解释:2-2 = 1/22 = 1/4 = 0.25
提示:
-100.0 < x < 100.0
x
n
=
x
n
/
2
∗
x
n
/
2
=
(
x
2
)
n
/
2
x^n = x^{n/2} * x^{n/2} = (x^2)^{n/2}
xn=xn/2∗xn/2=(x2)n/2,令n/2为整数,则需要分奇偶两种情况,即
x
n
=
{
(
x
2
)
n
/
2
,
n
为偶数
x
(
x
2
)
n
/
2
,
n
为奇数
x^n =
幂结果获取:

转化为位运算
n >> 1n % 2等价于判断二进制的最右位n & 1class Solution {
public double myPow(double x, int n) {
if (x == 0.0) {
return 0.0;
}
long b = n;
double ans = 1.0;
if (b < 0) {
x = 1 / x;
b = -b;
}
while (b > 0) {
if ((b & 1) == 1) {
ans *= x;
}
x *= x;
b >>= 1;
}
return ans;
}
}