• 【图像分割】基于回溯搜索优化算法实现图像聚类分割附matlab代码


    1 内容介绍

    阈值法是一种简单且有效的图像分割技术.但是随着阈值数目的增加,求解阈值的计算量增大并且实时性降低,这给多阈值图像分割带来了很大的困难.为了克服这一困难,把多阈值分割看作一个优化问题.将最大类间方差法当作要优化的函数,用回溯搜索优化算法求解要优化的函数,从而实现多阈值图像分割.将提出的多阈值算法应用于基准测试图像上,并与传统阈值分割法比较.实验结果表明:回溯搜索优化算法很好的解决了最大类间方差算法求解多阈值分割实时性差的问题,并验证了该算法应用在图像分割上是可行的.

    2 仿真代码

    %{

    Backtracking Search Optimization Algorithm (BSA)

    Platform: Matlab 2013a   

    Cite this algorithm as;

    [1]  P. Civicioglu, "Backtracking Search Optimization Algorithm for 

    numerical optimization problems", Applied Mathematics and Computation, 219, 8121?144, 2013.

    Copyright Notice

    Copyright (c) 2012, Pinar Civicioglu

    All rights reserved.

    Redistribution and use in source and binary forms, with or without 

    modification, are permitted provided that the following conditions are 

    met:

        * Redistributions of source code must retain the above copyright 

          notice, this list of conditions and the following disclaimer.

        * Redistributions in binary form must reproduce the copyright 

          notice, this list of conditions and the following disclaimer in 

          the documentation and/or other materials provided with the distribution

          

    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 

    AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 

    IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 

    ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE 

    LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 

    CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 

    SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 

    INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 

    CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 

    ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 

    POSSIBILITY OF SUCH DAMAGE.

    %}

    function bsa(fnc,mydata,popsize,dim,DIM_RATE,low,up,epoch)

    %INITIALIZATION

    if numel(low)==1, low=low*ones(1,dim); up=up*ones(1,dim); end % this line must be adapted to your problem

    pop=GeneratePopulation(popsize,dim,low,up); % see Eq.1 in [1]

    fitnesspop=feval(fnc,pop,mydata);

    historical_pop=GeneratePopulation(popsize,dim,low,up); % see Eq.2 in [1]

    % historical_pop  is swarm-memory of BSA as mentioned in [1].

    % ------------------------------------------------------------------------------------------ 

    for epk=1:epoch

        %SELECTION-I

        if rand

        historical_pop=historical_pop(randperm(popsize),:); % see Eq.4 in [1]

        F=get_scale_factor; % see Eq.5 in [1], you can other F generation strategies 

        map=zeros(popsize,dim); % see Algorithm-2 in [1]         

        if rand

            for i=1:popsize,  u=randperm(dim); map(i,u(1:ceil(DIM_RATE*rand*dim)))=1; end

        else

            for i=1:popsize,  map(i,randi(dim))=1; end

        end

        % RECOMBINATION (MUTATION+CROSSOVER)   

        offsprings=pop+(map.*F).*(historical_pop-pop);   % see Eq.5 in [1]    

        offsprings=BoundaryControl(offsprings,low,up); % see Algorithm-3 in [1]

        % SELECTON-II

        fitnessoffsprings=feval(fnc,offsprings,mydata);

        ind=fitnessoffsprings

        fitnesspop(ind)=fitnessoffsprings(ind);

        pop(ind,:)=offsprings(ind,:);

        [globalminimum,ind]=min(fitnesspop);    

        globalminimizer=pop(ind,:);

        % EXPORT SOLUTIONS 

        assignin('base','globalminimizer',globalminimizer);

        assignin('base','globalminimum',globalminimum);

        fprintf('BSA|%5.0f -----> %9.16f\n',epk,globalminimum);

    end

    return

    function pop=GeneratePopulation(popsize,dim,low,up)

    pop=ones(popsize,dim);

    for i=1:popsize

        for j=1:dim

            pop(i,j)=rand*(up(j)-low(j))+low(j);

        end

    end

    return

    function pop=BoundaryControl(pop,low,up)

    [popsize,dim]=size(pop);

    for i=1:popsize

        for j=1:dim                

            k=rand

            if pop(i,j)

            if pop(i,j)>up(j),  if k, pop(i,j)=up(j);  else pop(i,j)=rand*(up(j)-low(j))+low(j); end, end        

        end

    end

    return

    function F=get_scale_factor % you can change generation strategy of scale-factor,F    

         F=3*randn; % STANDARD brownian-walk

        % F=4*randg;  % brownian-walk    

        % F=lognrnd(rand,5*rand);  % brownian-walk              

        % F=1/normrnd(0,5);        % pseudo-stable walk (levy-like)

        % F=1./gamrnd(1,0.5);      % pseudo-stable walk (levy-like, simulates inverse gamma distribution; levy-distiribution)   

    return

    3 运行结果

    4 参考文献

    [1]LI Sheng-jie. 基于回溯搜索优化算法的图像分割[J]. 新一代信息技术, 2019, 2(11):7.

    博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

  • 相关阅读:
    SaaS企业如何构建与自身增长相匹配的渠道力
    信息系统项目管理师-进度管理论文提纲
    Vuex基本流程及 mapState mapMutations mapActions 简写形式
    协程理解1
    Android OpenCV竖屏处理策略和底层代码修改
    新手怎么使用GitHub?
    113. 授人以渔 - 如何自行查询任意 SAP UI5 控件属性的文档和技术实现细节
    【计算机视觉】MoCo v3 讲解
    学习Java8 Stream流,让我们更加便捷的操纵集合
    基于边缘网关的智慧工地监测方案
  • 原文地址:https://blog.csdn.net/qq_59747472/article/details/126146722