• QT with OpenGL(Shadow Mapping)(面光源篇)


    面光源与平行光源的生成大多相同,因此这里只说明面光源与平行光源的区别。
    关于平行光源的细节看这篇blog

    1. 生成深度帧缓存

    对于每一个面光源都要生成一个帧缓存

    depthMapFBO = new QOpenGLFramebufferObject(SHADOW_WIDTH,SHADOW_HEIGHT,QOpenGLFramebufferObject::Depth);
    
    • 1

    2. 生成Shadow Mapping

    注意生成面光源时,不能使用正交矩阵,这便是面光源与点光源所不同的。

    (1)计算平行光源视口下的正交投影矩阵

    QMatrix4x4 PointLight::getLightMatrix()
    {
        QMatrix4x4 lightProjection, lightView;
    
        float near_plane = 0.50f, far_plane = 100.5f;
        lightProjection.perspective(150.0f,1,near_plane,far_plane);
        //lightProjection.ortho(-eyeing, eyeing, -eyeing, eyeing, near_plane, far_plane);
        lightView.lookAt(position, position+lightNormal, QVector3D(0.0, 1.0, 0.0));
        lightSpaceMatrix = lightProjection * lightView;
        return lightSpaceMatrix;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    (2)生成shadow mapping图

    void GLWidget::generatePointShadow(int k)
    {
        scene.pointlights[k]->depthMapFBO->bind();
        glClear(GL_COLOR_BUFFER_BIT |GL_DEPTH_BUFFER_BIT);
        simpleDepthShader->bind();//阴影图着色器
        simpleDepthShader->setUniformValue("lightSpaceMatrix",scene.pointlights[k]->getLightMatrix());
        simpleDepthShader->setUniformValue("isPerspective",true);
        for(int i=0;i<scene.objects.size();++i){
            simpleDepthShader->setUniformValue("model",scene.objects.at(i)->model.getmodel());
            scene.objects.at(i)->Draw(*simpleDepthShader);
        }
        scene.pointlights[k]->depthMapFBO->release();
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    其中simpleDepthShader着色器的frag代码需要改变为

    #version 450 core
    out vec4 FragColor;
    
    float near_plane = 0.5f;
    float far_plane = 100.5f;
    
    uniform bool isPerspective = false;
    
    float LinearizeDepth(float depth)
    {
        float z = depth * 2.0 - 1.0; // Back to NDC
        return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane))/ far_plane;
    }
    
    void main()
    {
        gl_FragDepth = gl_FragCoord.z;
        float depth = gl_FragCoord.z;
        if(isPerspective){
            depth = LinearizeDepth(depth);
        }
        FragColor = vec4(vec3(depth), 1.0f);
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    当渲染的为面光源时,需要传入参数isPerspective=true,将透视投影下的深度变成了线性的深度值。
    否则,将深度缓冲视觉化经常会得到一个几乎全白的结果。

    3. 显示阴影图,验证正确性

     if(shadowShow){
            if(objectNumber&&scene.objects.at(objectNumber-1)->islight){
                showShadow(scene.pointlights.at(objectNumber-1)->depthMapFBO->texture());
            }
            else showShadow(scene.dirlight->depthMapFBO->texture());
            return;
        }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    void GLWidget::showShadow(GLuint ID)
    {
        glViewport(0,0,width(),height());
        glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT|GL_STENCIL_BUFFER_BIT);
        debug_dep->bind();//shader
        debug_dep->setUniformValue("depthMap",0);
        glActiveTexture(GL_TEXTURE0);
        glBindTexture(GL_TEXTURE_2D,ID);
        
        renderQuad();
        debug_dep->release();
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    在这里插入图片描述

    在这里插入图片描述

    4.使用阴影贴图生成阴影

    (1)设置Uniform参数

    void ShaderSelector::setPointDir(int j, QVector<PointLight *> pointlights)
    {
    //    struct PointLight {
    //            vec3 position;
    
    //            vec3 ambient;
    //            vec3 diffuse;
    //            vec3 specular;
    
    //            vec3 lightnormal;
    
    //            float constant;
    //            float linear;
    //            float quadratic;
    
    //            //阴影
    //            sampler2D shadowMap;
    //            mat4 lightSpaceMatrix;
    //            float width;
    
    //    }pointLights[16];
        QOpenGLShaderProgram *shader = getShader(j);
        int numPointLight = pointlights.size();
        shader->setUniformValue("numPointLights",numPointLight);
        QString structNameFront = "pointLights[";
        for(int i = 0; i < numPointLight; i++){
            QString StringNum;
            StringNum.setNum(i);
            QString StringI = structNameFront+StringNum;
            shader->setUniformValue(QString(StringI+"].position").toStdString().c_str(),pointlights[i]->position);
            shader->setUniformValue(QString(StringI+"].ambient").toStdString().c_str(),pointlights[i]->color * PointLight::ambient);
            shader->setUniformValue(QString(StringI+"].diffuse").toStdString().c_str(),pointlights[i]->color * PointLight::diffuse);
            shader->setUniformValue(QString(StringI+"].specular").toStdString().c_str(),pointlights[i]->color * PointLight::specular);
            shader->setUniformValue(QString(StringI+"].lightnormal").toStdString().c_str(),pointlights[i]->lightNormal);
            shader->setUniformValue(QString(StringI+"].constant").toStdString().c_str(),PointLight::constant);
            shader->setUniformValue(QString(StringI+"].linear").toStdString().c_str(),PointLight::linear);
            shader->setUniformValue(QString(StringI+"].quadratic").toStdString().c_str(),PointLight::quadratic);
            shader->setUniformValue(QString(StringI+"].shadowMap").toStdString().c_str(), 4+i);
            shader->setUniformValue(QString(StringI+"].lightSpaceMatrix").toStdString().c_str(),pointlights[i]->getLightMatrix());
            shader->setUniformValue(QString(StringI+"].width").toStdString().c_str(),pointlights[i]->width);
    
            //qDebug()<<"width="<width;
    
            glActiveTexture(GL_TEXTURE4+i);
            glBindTexture(GL_TEXTURE_2D,pointlights[i]->depthMapFBO->texture());
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_BORDER);
            glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_BORDER);
            GLfloat borderColor[] = { 1.0, 1.0, 1.0, 1.0 };
            glTexParameterfv(GL_TEXTURE_2D, GL_TEXTURE_BORDER_COLOR, borderColor);
        }
    
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54

    (2)shader渲染

    vert

    #version 450 core
    layout (location = 0) in vec3 aPos;
    layout (location = 1) in vec3 aNormal;
    layout (location = 2) in vec2 aTexCoords;
    
    out vec3 Normal;
    out vec3 FragPos;
    out vec2 TexCoords;
    
    uniform mat4 model;
    uniform mat4 view;
    uniform mat4 projection;
    
    
    void main()
    {
    
            Normal = mat3(transpose(inverse(model))) * aNormal;
            TexCoords = aTexCoords;
            FragPos = vec3(model * vec4(aPos,1.0));
            gl_Position = projection * view * model * vec4(aPos,1.0);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22

    frag,点光源代码
    PCSS添加参数weightOfLight,面光源面积越大,计算的半影就越大。

    float PCSS(vec3 projCoords,sampler2D shadowMap,float weightOfLight){
    
        // 取得最近点的深度(使用[0,1]范围下的fragPosLight当坐标)
        float closestDepth = texture(shadowMap, projCoords.xy).r;
        // 取得当前片段在光源视角下的深度
        float currentDepth = projCoords.z;
        // 检查当前片段是否在阴影中
        //float bias = max(0.05 * (1.0 - dot(Normal, -dirLight.direction)), 0.005);
        //每像素偏移距离
        vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
    
        //PCSS核心算法
        float visibility = 0.0;
        //第一步计算平均遮挡物深度
        float averBlocker = averageBlockDep(projCoords,texelSize,shadowMap);
        //第二步,计算半影半径
        float penumbra = (projCoords.z - averBlocker) * weightOfLight / averBlocker;
        //第三步 PCF
        visibility = PCF(projCoords,int(penumbra),shadowMap);
    
        return visibility;
    }
    
    void main()
    {
    	for(int i = 0; i < numPointLights; i++){
                result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);
         }
         FragColor = vec4(result,1.0);
    }
    vec3 CalcPointLight(PointLight light,vec3 normal, vec3 fragPos,vec3 viewDir){
            vec3 lightDir = normalize(light.position - fragPos);//片元指向光源
    
            float angleDecay = 0.0f;
            if(any(notEqual(light.lightnormal,vec3(0,0,0)))){//光强cos衰减
                angleDecay = max(dot(-lightDir,normalize(light.lightnormal)),0.0f);
            }
    
            float diff = max(dot(lightDir,normal),0.0);
            vec3 reflectDir = reflect(-lightDir,normal);
            float spec = 0.0;//反射系数
            if(blinn){
                vec3 halfwayDir = normalize(viewDir+lightDir);//半程向量
                spec = pow(max(dot(normal,halfwayDir),0.0),material.shiness*4);
            }
            else{
                vec3 reflectDir = reflect(-lightDir,normal); //反射方向
                spec = pow(max(dot(viewDir,reflectDir),0.0),material.shiness);//计算镜面反射系数
            }
    
            float distance = length(light.position - fragPos);
            float attenuation = 1.0/(light.constant + light.linear * distance + light.quadratic * (distance * distance));
    
            vec3 diffusecolor = vec3(texture2D(material.texture_diffuse1,TexCoords));
            vec3 specularcolor = vec3(texture2D(material.texture_specular1,TexCoords));
    
            //反gamma矫正
            diffusecolor = pow(diffusecolor, vec3(2.2));
            specularcolor = pow(specularcolor , vec3(2.2));
    
            vec3 ambient = light.ambient * diffusecolor;
            vec3 diffuse = light.diffuse * diff * diffusecolor;
            vec3 specular = light.specular * spec * specularcolor;
    
            ambient *= attenuation;
            diffuse *= attenuation;
            specular *= attenuation;
    
            diffuse *= angleDecay;
            specular *= angleDecay;
    
            //阴影计算
            float shadow = 0.0;
            {
                //光视角的点位置
                vec4 FragPosLightSpace = light.lightSpaceMatrix * vec4(FragPos, 1.0);
                // 执行透视除法
                vec3 projCoords = FragPosLightSpace.xyz / FragPosLightSpace.w;
                // 变换到[0,1]的范围
                projCoords = projCoords * 0.5 + 0.5;
                //转化为线性深度
                projCoords.z = LinearizeDepth(projCoords.z);
    
                // 计算阴影
                shadow = PCSS(projCoords,light.shadowMap,light.width);
                //shadow = PCF(projCoords,1,light.shadowMap);
            }
    
            vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular));
    
            return lighting;
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92

    frag全部代码

    #version 450 core
    
    struct Material {
            sampler2D texture_diffuse1;
            sampler2D texture_specular1;
            float shiness;
    };
    
    
    struct DirLight {
        bool Activated;
        vec3 direction;
    
        vec3 ambient;
        vec3 diffuse;
        vec3 specular;
        //阴影
        sampler2D shadowMap;
        mat4 lightSpaceMatrix;
    
    };
    
    struct PointLight {
        vec3 position;
        vec3 lightnormal;
    
        vec3 ambient;
        vec3 diffuse;
        vec3 specular;
    
        float constant;
        float linear;
        float quadratic;
    
        //阴影
        sampler2D shadowMap;
        mat4 lightSpaceMatrix;
        float width;
    };
    
    //顶点信息
    in vec3 Normal;
    in vec3 FragPos;//该像素在世界坐标系下的坐标
    in vec2 TexCoords;
    //输出
    out vec4 FragColor;
    //视点
    uniform vec3 viewPos;
    //平行光
    uniform DirLight dirLight;
    
    //点光源
    uniform PointLight pointLights[16];
    uniform int numPointLights;
    
    uniform Material material;
    
    //光照
    uniform bool blinn;
    //色调映射
    uniform float toneMapping;
    //gamma
    uniform bool gamma;
    
    
    const float PI = 3.141592653589793;
    const float PI2 = 6.283185307179586;
    float near_plane = 0.5f;
    float far_plane = 100.5f;
    
    //采样数
    const int NUM_SAMPLES = 30;
    
    //采样圈数
    const int NUM_RINGS = 10;
    
    //函数申明
    vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir);
    vec3 CalcPointLight(PointLight light,vec3 normal, vec3 fragPos,vec3 viewDir);
    float PCF(vec3 projCoords,int r,sampler2D shadowMap);
    float PCSS(vec3 projCoords,sampler2D shadowMap,float weightOfLight);
    float averageBlockDep(vec3 projCoords,vec2 texelSize,sampler2D shadowMap);
    void poissonDiskSamples(const in vec2 randomSeed);
    
    
    float LinearizeDepth(float depth)
    {
        float z = depth * 2.0 - 1.0; // Back to NDC
        return (2.0 * near_plane * far_plane) / (far_plane + near_plane - z * (far_plane - near_plane))/far_plane;
    }
    
    //全局参数
    vec2 poissonDisk[NUM_SAMPLES];
    
    highp float rand_2to1(vec2 uv ) {//传入一个二维数,传出一个假随机数。
        // 0 - 1
        const highp float a = 12.9898, b = 78.233, c = 43758.5453;
        highp float dt = dot( uv.xy, vec2( a,b ) );
        highp float sn = mod( dt, PI );
        return fract(sin(sn) * c);//只取小数部分(取值范围0~1,若为负+1)
    }
    
    void poissonDiskSamples(const in vec2 randomSeed){
        float ANGLE_STEP = PI2 * float(NUM_RINGS)/float( NUM_SAMPLES);//角位移大小
        float INV_NUM_SAMPLES = 1.0 / float(NUM_SAMPLES); //采样数的倒数
    
        float angle = rand_2to1(randomSeed) * PI2;//初始角度(弧度)
        float radius = INV_NUM_SAMPLES;//初始半径
        float radiusStep = radius;     //半径增量
    
        for( int i = 0; i < NUM_SAMPLES; i ++ ) {
          poissonDisk[i] = vec2( cos( angle ), sin( angle ) ) * pow( radius, 0.75 );
          radius += radiusStep;//半径增加
          angle += ANGLE_STEP;//弧度增加
        }
    }
    
    void main()
    {
        // 属性
           vec3 norm = normalize(Normal);
           vec3 viewDir = normalize(viewPos - FragPos);
           vec3 result = vec3(0,0,0);
           // 平行光
           if(dirLight.Activated){
                result += CalcDirLight(dirLight, norm, viewDir);
           }
           // 点光源
           for(int i = 0; i < numPointLights; i++){
                result += CalcPointLight(pointLights[i], norm, FragPos, viewDir);
           }
           //色调映射
           if(toneMapping>0.0f){
               //result.rgb = result.rgb /(result.rgb+ vec3(1.0));
               result.rgb = vec3(1.0) - exp(-result.rgb * toneMapping);
           }
    
    
           //gamma矫正
           float gamma_ = 2.2;
           if(gamma){
               result.rgb = pow(result.rgb, vec3(1.0/gamma_));
           }
    
           FragColor = vec4(result,1.0);
    }
    
    float averageBlockDep(vec3 projCoords,vec2 texelSize,sampler2D shadowMap){
        float blockerZ = 0.0;//遮挡物总深度
        int count = 0;
        int r=5;
    
        poissonDiskSamples(projCoords.xy+vec2(0.1314,0.351));
        for(int i=0;i<NUM_SAMPLES;++i){
            float depth = texture(shadowMap, projCoords.xy + r * poissonDisk[i] * texelSize).r;
            if(depth < projCoords.z){//如果为遮挡物
                count++;
                blockerZ +=depth;
            }
        }
    
    
        if(count == 0||count==(r*2+1)*(r*2+1))return 1.0f;
        return blockerZ / count;
    }
    
    float PCSS(vec3 projCoords,sampler2D shadowMap,float weightOfLight){
    
        // 取得最近点的深度(使用[0,1]范围下的fragPosLight当坐标)
        float closestDepth = texture(shadowMap, projCoords.xy).r;
        // 取得当前片段在光源视角下的深度
        float currentDepth = projCoords.z;
        // 检查当前片段是否在阴影中
        //float bias = max(0.05 * (1.0 - dot(Normal, -dirLight.direction)), 0.005);
        //每像素偏移距离
        vec2 texelSize = 1.0 / textureSize(shadowMap, 0);
    
        //PCSS核心算法
        float visibility = 0.0;
        //第一步计算平均遮挡物深度
        float averBlocker = averageBlockDep(projCoords,texelSize,shadowMap);
        //第二步,计算半影半径
        float penumbra = (projCoords.z - averBlocker) * weightOfLight / averBlocker;
        //第三步 PCF
        visibility = PCF(projCoords,int(penumbra),shadowMap);
    
        return visibility;
    }
    
    float PCF(vec3 projCoords,int r,sampler2D shadowMap)
    {
        // 取得最近点的深度(使用[0,1]范围下的fragPosLight当坐标)
        float closestDepth = texture(shadowMap, projCoords.xy).r;
        // 取得当前片段在光源视角下的深度
        float currentDepth = projCoords.z;
        // 检查当前片段是否在阴影中
        float bias = max(0.05 * (1.0 - dot(Normal, -dirLight.direction)), 0.005);
    
        //PCF
        float shadow = 0.0;
        vec2 texelSize = 1.0 / textureSize(shadowMap, 0);//每像素偏移距离
    
        poissonDiskSamples(projCoords.xy);
        for(int i=0;i<NUM_SAMPLES;i++){
            float pcfDepth = texture(shadowMap, projCoords.xy + r * poissonDisk[i] * texelSize).r;
            shadow += currentDepth - bias > pcfDepth ? 1.0 : 0.0;
        }
        shadow /= float(NUM_SAMPLES);
    
        //远平面矫正
        if(projCoords.z > 1.0) shadow = 0.0;
    
        return shadow;
    }
    
    //计算平行光源
    vec3 CalcDirLight(DirLight light, vec3 normal, vec3 viewDir){
            vec3 lightDir = normalize(-light.direction);//平行光反方向
            float diff = max(dot(lightDir,normal),0.0);//cos衰减系数
            float spec = 0.0;//反射系数
            if(blinn){
                vec3 halfwayDir = normalize(viewDir+lightDir);//半程向量
                spec = pow(max(dot(normal,halfwayDir),0.0),material.shiness*4);
            }
            else{
                vec3 reflectDir = reflect(-lightDir,normal); //反射方向
                spec = pow(max(dot(viewDir,reflectDir),0.0),material.shiness);//计算镜面反射系数
            }
    
            vec3 diffusecolor = vec3(texture2D(material.texture_diffuse1,TexCoords));
            vec3 specularcolor = vec3(texture2D(material.texture_specular1,TexCoords));
            //反gamma矫正
            diffusecolor = pow(diffusecolor, vec3(2.2));
            specularcolor = pow(specularcolor , vec3(2.2));
            vec3 ambient = light.ambient * diffusecolor;
            vec3 diffuse = light.diffuse * diff * diffusecolor;
            vec3 specular = light.specular * spec * specularcolor;
    
            //阴影计算
            float shadow = 0.0;
            {
                //光视角的点位置
                vec4 FragPosLightSpace = light.lightSpaceMatrix * vec4(FragPos, 1.0);
                // 执行透视除法
                vec3 projCoords = FragPosLightSpace.xyz / FragPosLightSpace.w;
                // 变换到[0,1]的范围
                projCoords = projCoords * 0.5 + 0.5;
                // 计算阴影
                shadow = PCSS(projCoords,light.shadowMap,5);
                //shadow = PCF(projCoords,1,light.shadowMap);
            }
    
            vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular));
            return lighting;
    }
    
    vec3 CalcPointLight(PointLight light,vec3 normal, vec3 fragPos,vec3 viewDir){
            vec3 lightDir = normalize(light.position - fragPos);//片元指向光源
    
            float angleDecay = 0.0f;
            if(any(notEqual(light.lightnormal,vec3(0,0,0)))){//不是(0,0,0)
                angleDecay = max(dot(-lightDir,normalize(light.lightnormal)),0.0f);
            }
    
            float diff = max(dot(lightDir,normal),0.0);
            vec3 reflectDir = reflect(-lightDir,normal);
            float spec = 0.0;//反射系数
            if(blinn){
                vec3 halfwayDir = normalize(viewDir+lightDir);//半程向量
                spec = pow(max(dot(normal,halfwayDir),0.0),material.shiness*4);
            }
            else{
                vec3 reflectDir = reflect(-lightDir,normal); //反射方向
                spec = pow(max(dot(viewDir,reflectDir),0.0),material.shiness);//计算镜面反射系数
            }
    
            float distance = length(light.position - fragPos);
            float attenuation = 1.0/(light.constant + light.linear * distance + light.quadratic * (distance * distance));
    
            vec3 diffusecolor = vec3(texture2D(material.texture_diffuse1,TexCoords));
            vec3 specularcolor = vec3(texture2D(material.texture_specular1,TexCoords));
    
            //反gamma矫正
            diffusecolor = pow(diffusecolor, vec3(2.2));
            specularcolor = pow(specularcolor , vec3(2.2));
    
            vec3 ambient = light.ambient * diffusecolor;
            vec3 diffuse = light.diffuse * diff * diffusecolor;
            vec3 specular = light.specular * spec * specularcolor;
    
            ambient *= attenuation;
            diffuse *= attenuation;
            specular *= attenuation;
    
            diffuse *= angleDecay;
            specular *= angleDecay;
    
            //阴影计算
            float shadow = 0.0;
            {
                //光视角的点位置
                vec4 FragPosLightSpace = light.lightSpaceMatrix * vec4(FragPos, 1.0);
                // 执行透视除法
                vec3 projCoords = FragPosLightSpace.xyz / FragPosLightSpace.w;
                // 变换到[0,1]的范围
                projCoords = projCoords * 0.5 + 0.5;
                //转化为线性深度
                projCoords.z = LinearizeDepth(projCoords.z);
    
                // 计算阴影
                shadow = PCSS(projCoords,light.shadowMap,light.width);
                //shadow = PCF(projCoords,1,light.shadowMap);
            }
    
            vec3 lighting = (ambient + (1.0 - shadow) * (diffuse + specular));
    
            return lighting;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319

    问题

    在平面上灯光在地面上形成光晕(一圈一圈的波纹),猜测是自阴影导致吧???
    在这里插入图片描述

  • 相关阅读:
    vrrp协议与keepalived浅析
    旋转数组的最小数字、二维数组中的查找、调整数组顺序使奇数位于偶数前面
    【Spring】20 解析Spring注解驱动的容器配置
    如何在idea中创建一个SpringBoot项目(超详细教学)
    docker 部署 MongoDB
    Java是如何制作月饼的——制作、下单和售卖
    【算法设计与分析】— —单源最短路径的贪心算法
    #力扣:LCP 06. 拿硬币@FDDL
    C++的缺陷和思考(六)
    [st表][贪心]Loop 2022杭电多校第6场 1012
  • 原文地址:https://blog.csdn.net/weixin_44518102/article/details/126091187