• 【智能优化算法-灰狼算法】基于狩猎 (DLH) 搜索策略的灰狼算法求解单目标优化问题附matlab代码


    1 内容介绍

    Grey wolf optimization (GWO) algorithm is a new emerging algorithm that is based on the social hierarchy of grey wolves as well as their hunting and cooperation strategies. Introduced in 2014, this algorithm has been used by a large number of researchers and designers, such that the number of citations to the original paper exceeded many other algorithms. In a recent study by Niu et al., one of the main drawbacks of this algorithm for optimizing real﹚orld problems was introduced. In summary, they showed that GWO's performance degrades as the optimal solution of the problem diverges from 0. In this paper, by introducing a straightforward modification to the original GWO algorithm, that is, neglecting its social hierarchy, the authors were able to largely eliminate this defect and open a new perspective for future use of this algorithm. The efficiency of the proposed method was validated by applying it to benchmark and real﹚orld engineering problems.

    2 仿真代码

    %___________________________________________________________________%%  Grey Wold Optimizer (GWO) source codes version 1.0               %%                                                                   %%  Developed in MATLAB R2011b(7.13)                                 %%                                                                   %%  Author and programmer: Seyedali Mirjalili                        %%                                                                   %%         e-Mail: ali.mirjalili@gmail.com                           %%                 seyedali.mirjalili@griffithuni.edu.au             %%                                                                   %%       Homepage: http://www.alimirjalili.com                       %%                                                                   %%   Main paper: S. Mirjalili, S. M. Mirjalili, A. Lewis             %%               Grey Wolf Optimizer, Advances in Engineering        %%               Software , in press,                                %%               DOI: 10.1016/j.advengsoft.2013.12.007               %%                                                                   %%___________________________________________________________________%% This function initialize the first population of search agentsfunction Positions=initialization(SearchAgents_no,dim,ub,lb)Boundary_no= size(ub,2); % numnber of boundaries% If the boundaries of all variables are equal and user enter a signle% number for both ub and lbif Boundary_no==1    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;end% If each variable has a different lb and ubif Boundary_no>1    for i=1:dim        ub_i=ub(i);        lb_i=lb(i);        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;    endend

    3 运行结果

    4 参考文献

    [1]唐宏伟. 未知环境下基于智能优化算法的多机器人目标搜索研究[D]. 湖南大学.

    [2]崔明朗, 杜海文, 魏政磊,等. 多目标灰狼优化算法的改进策略研究[J]. 计算机工程与应用, 2018, 54(5):9.

    博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

    部分理论引用网络文献,若有侵权联系博主删除。

  • 相关阅读:
    kubernetes中的list-watch机制
    AOC新特性发布会之事件中心
    【论文笔记】MiniSeg: An Extremely Minimum Network for Efficient COVID-19 Segmentation
    会议OA项目-首页->flex弹性布局,轮播图后台数据获取及组件使用(后台数据交互mockjs),首页布局
    2021年软件测试面试题大全
    python难题切片处理
    第八周学习笔记DAY.1-异常
    命令空间定义的流程和使用方法
    openai的其他文本补全模型
    权限模型 DAC ACL RBAC ABAC
  • 原文地址:https://blog.csdn.net/matlab_dingdang/article/details/126030314