目录

大家好 我是政胤 今天教大家一个比较刑的爬虫案例
Python爬虫 爬取下载美国科研网站数据
制作不易 点个免费的关注 支持一下吧
目标网站:https://app.powerbigov.us/view?r=eyJrIjoiYWEx...
目标数据:下载2009-2013年的表格数据,并存储为CSV文件

目标网站是漂亮国的科研数据,是PowerBI实现的网页数据,无法使用Ctrl+C复制内容,因此,求助于我们进行爬取。
首先任务可拆解为两个部分:一是从网站爬取数据到本地,二是解析数据输出CSV文件:
爬取数据部分:
解析网页,找到数据异步加载的实际请求地址与参数
书写爬虫代码获取全部数据
解析数据部分
这是本次任务的主要难点所在,难点在于:在返回的数据list中,元素不是固定的个数,只有与上一行不同的数值,而具体哪一列不同、哪一列相同,是使用一个“R”值表示,正常解决思路是要通过JS逆向,找出解析R关系的函数,完成解析。但是,由于网页的JS非常复杂,且许多函数名都是简写,阅读十分困难,一直没有逆向成功

在解决该问题上,先是手工查询总结关系,完成了第一个版本,没想到后续在写写这篇分享文章时突然思路打开,改变了请求数据方式,绕过了分析R关系的步骤:
方案一:按正常请求,使用R关系解析数据
下载完整的数据后分析,所需要的2009至2013年的数据中,R关系一共有124种,最小值0、最大值4083,通过人工查询这124种关系,制作成字典,完成解析。总结出的关系如下图(手工查询了5个小时,累啊):

方案二:以时间换空间,每次仅请求一行数据,绕过解析R关系的难题
在复盘时,突然头脑开窍,请求到的数据第一行一定是完整的,要是每次只请求一行数据,那就不可能存在与上一行相同的情形了,这种情况下就能绕过解析R关系这一难题。测试后方案可行,只是需要考虑以下问题:
开启多线程加速以缩时间,但即使开启多线程,也只能按12个年份开启12个线程,而行数最多的年份约2万行,爬虫需要运行约5至6个小时
断点续爬,避免程序异常中断后,需要从头开始;
目标网站分析
第一步当然是对目标网站进行分析,找到数据正确的请求地址,这点很容易,打开Chrome的开发者模式,向下拖动滚动条,看到新出现的请求,就是真实的地址了,直接上结果:

然后看一下POST请求的参数

请求的参数
再看一下Headers,意外发现,竟然没有反爬!没有反爬!没有反爬!好吧,漂亮国的网站就是大气。
- # 完整参数就略过,关键参数以下三项:
- # 1.筛选年份的参数,示例:
- param['queries'][0]['Query']['Commands'][0]['SemanticQueryDataShapeCommand']['Query']['Where'][0]['Condition']['In']['Values'][0][0]['Literal']['Value'] = '2009L'
- # 2.请求下一批数据(请求首批数据时无需传入该参数),示例:
- param['queries'][0]['Query']['Commands'][0]['SemanticQueryDataShapeCommand']['Binding']['DataReduction']['Primary']['Window']['RestartTokens'] = [["'Augusto E Caballero-Robles'","'Physician'","'159984'","'Daiichi Sankyo, Inc.'","'CC0131'","'Basking Ridge'","'NJ'","'Compensation for Bona Fide Services'","2009L","'4753'"]]
- # 注:以上"RestartTokens"的值在前一批数据的response中,为上一批数据的返回字典值,示例res['results'][0]['result']['data']['dsr']['DS'][0]['RT']
- # 3.请求页面的行数(浏览器访问默认是500行/页,但爬虫访问的话...你懂的),示例:
- param['queries'][0]['Query']['Commands'][0]['SemanticQueryDataShapeCommand']['Binding']['DataReduction']['Primary']['Window']['Count'] = 500
- # 参数还有很多,例如排序的参数ordby,各种筛选项等
请求数据的网址:https://wabi-us-gov-virginia-api.analysis.usgovcloudapi.net/public/reports/querydata?synchronous=true
POST的关键参数:
爬虫主要步骤及代码

在获取全部数据上,则使用一个while True死循环,每次请求返回值中如有"RT"关键字,则修改POST参数,发起下一个请求,直至返回值中没有"RT"关键字,代表全部数据爬取结束(详见代码)
请求过程中出现的异常需要捕获,根据异常类型决定下一步操作,由于该网站没有反爬,只有超时或连接错误的异常,因此,只需要重启发起请求即可,因此可以不考虑断点续爬
以上步骤,详细代码如下:
网站没有反爬,找到正确的路径和参数后,在爬虫代码实现上相对简单,直接发起post请求即可,代码中通过PageSpider类实现(详细代码附后)
在断点续传上,通过流程解决,把每行数据存储到TXT文件中,文件名记录年份以及行数,先读取已爬取的记录,找到最后一次请求结果,然后发起后续请求。
- """
- 爬取页面数据的爬虫
- """
- import pathlib as pl
- import requests
- import json
- import time
- import threading
- import urllib3
-
-
- def get_cost_time(start: time.time, end: time.time = None):
- """
- 计算间隔时长的方法
- :param start: 起始时间
- :param end: 结束时间,默认为空,按最新时间计算
- :return: 时分秒格式
- """
- if not end:
- end = time.time()
- cost = end - start
- days = int(cost / 86400)
- hours = int(cost % 86400 / 3600)
- mins = int(cost % 3600 / 60)
- secs = round(cost % 60, 4)
- text = ''
- if days:
- text = f'{text}{days}天'
- if hours:
- text = f'{text}{hours}小时'
- if mins:
- text = f'{text}{mins}分钟'
- if secs:
- text = f'{text}{secs}秒'
- return text
-
-
- class PageSpider:
- def __init__(self, year: int, nrows: int = 500, timeout: int = 30):
- """
- 初始化爬虫的参数
- :param year: 下载数据的年份,默认空,不筛选年份,取得全量数据
- :param nrows: 每次请求获取的数据行数,默认500,最大30000(服务器自动限制,超过无效)
- :param timeout: 超时等待时长
- """
- self.year = year if year else 'all'
- self.timeout = timeout
- # 请求数据的地址
- self.url = 'https://wabi-us-gov-virginia-api.analysis.usgovcloudapi.net/public/reports/querydata?synchronous=true'
- # 请求头
- self.headers = {
- # 太长省略,自行在浏览器中复制
- }
- # 默认参数
- self.params = {
- # 太长省略,自行在浏览器中复制
- }
- # 修改默认参数中的每次请求的行数
- self.params['queries'][0]['Query']['Commands'][0]['SemanticQueryDataShapeCommand']['Binding']['DataReduction'][
- 'Primary']['Window']['Count'] = nrows
- # 修改默认参数中请求的年份
- if self.year != 'all':
- self.params['queries'][0]['Query']['Commands'][0]['SemanticQueryDataShapeCommand']['Query']['Where'][0][
- 'Condition']['In']['Values'][0][0]['Literal']['Value'] = f'{year}L'
-
- @classmethod
- def read_json(cls, file_path: pl.Path):
- with open(file_path, 'r', encoding='utf-8') as fin:
- res = json.loads(fin.read())
- return res
-
- def get_idx_and_rt(self):
- """
- 获取已经爬取过的信息,最大的idx以及请求下一页的参数
- """
- single = True
- tmp_path = pl.Path('./tmp/')
- if not tmp_path.is_dir():
- tmp_path.mkdir()
- files = list(tmp_path.glob(f'{self.year}_part*.txt'))
- if files:
- idx = max([int(filename.stem.replace(f'{self.year}_part', '')) for filename in files])
- res = self.read_json(tmp_path / f'{self.year}_part{idx}.txt')
- key = res['results'][0]['result']['data']['dsr']['DS'][0].get('RT')
- if not key:
- single = False
- else:
- idx = 0
- key = None
- return idx, key, single
-
- def make_params(self, key: list = None) -> dict:
- """
- 制作请求体中的参数
- :param key: 下一页的关键字RestartTokens,默认空,第一次请求时无需传入该参数
- :return: dict
- """
- params = self.params.copy()
- if key:
- params['queries'][0]['Query']['Commands'][0]['SemanticQueryDataShapeCommand']['Binding']['DataReduction'][
- 'Primary']['Window']['RestartTokens'] = key
- return params
-
- def crawl_pages(self, idx: int = 1, key: list = None):
- """
- 爬取页面并输出TXT文件的方法,
- :param idx: 爬取的索引值,默认为1,在每行爬取时,代表行数
- :param key: 下一页的关键字RestartTokens,默认空,第一次请求时无需传入该参数
- :return: None
- """
- start = time.time()
- while True: # 创建死循环爬取直至结束
- try:
- res = requests.post(url=self.url, headers=self.headers, json=self.make_params(key),
- timeout=self.timeout)
- except (
- requests.exceptions.ConnectTimeout,
- requests.exceptions.ConnectionError,
- urllib3.exceptions.ConnectionError,
- urllib3.exceptions.ConnectTimeoutError
- ): # 捕获超时异常 或 连接异常
- print(f'{self.year}_part{idx}: timeout, wait 5 seconds retry')
- time.sleep(5) # 休息5秒后再次请求
- continue # 跳过后续步骤
- except Exception as e: # 其他异常,打印一下异常信息
- print(f'{self.year}_part{idx} Error: {e}')
- time.sleep(5) # 休息5秒后再次请求
- continue # 跳过后续步骤
- if res.status_code == 200:
- with open(f'./tmp/{self.year}_part{idx}.txt', 'w', encoding='utf-8') as fout:
- fout.write(res.text)
- if idx % 100 == 0:
- print(f'{self.year}的第{idx}行数据写入完成,已用时: {get_cost_time(start)}')
- key = json.loads(res.text)['results'][0]['result']['data']['dsr']['DS'][0].get('RT', None)
- if not key: # 如果没有RT值,说明已经全部爬取完毕了,打印一下信息退出
- print(f'{self.year} completed max_idx is {idx}')
- return
- idx += 1
- else: # 打印一下信息重新请求
- print(f'{self.year}_part{idx} not 200,check please', res.text)
- continue
-
-
- def mul_crawl(year: int, nrows: int = 2):
- """
- 多线程爬取的方法,注按行爬取
- :param year: 需要爬取的年份
- :param nrows: 每份爬取的行数,若每次仅爬取1行数据,nrows参数需要为2,才会有下一行,否则都是第一行
- """
- # 定义爬虫对象
- spider = PageSpider(year, nrows=nrows)
- # 获取爬取对象已爬取的idx,key和是否完成爬取的信号single
- idx, key, single = spider.get_idx_and_rt()
- if not single:
- print(f'{year}年的共{idx}行数据已经全部下载,无需爬取')
- return
- print(f'{year}年的爬虫任务启动, 从{idx+1}行开始爬取')
- spider.crawl_pages(idx+1, key) # 特别注意,已经爬取了idx行,重启时,下一行需要+1,否则重启后,会覆盖一行数据
-
-
- if __name__ == '__main__':
- pools = []
- for y in range(2009, 2021):
- pool = threading.Thread(
- target=mul_crawl, args=(y, 2), name=f'{y}_thread' # 按行爬取,nrows参数需要为2
- )
- pool.start()
- pools.append(pool)
- for pool in pools:
- pool.join()
- print('任务全部完成')
代码运行示例:

以时间换空间,每次仅请求一行,绕过R关系解析
解析数据
方案一
解析数据困难的部分就是找出R关系规律,这部分是使用手工查询来解决的,直接上代码吧:
- class ParseData:
- """
- 解析数据的对象
- """
-
- def __init__(self, file_path: pl.Path = None):
- """
- 初始化对象
- :param file_path: TXT数据存放的路径,默认自身目录下的tmp文件夹
- """
- self.file_path = pl.Path('./tmp') if not file_path else file_path
- self.files = list(self.file_path.glob('2*.txt'))
- self.cols_dict = None
- self.colname_dict = {
- 'D0': 'License Type',
- 'D1': 'License Number',
- 'D2': 'Manufacturer Full Name',
- 'D3': 'Manufacturer ID',
- 'D4': 'City',
- 'D5': 'State',
- 'D6': 'Full Name',
- 'D7': 'Payment Category',
- 'D8': 'Covered Recipient ID'
- }
- self.colname_dict_T = {v: k for k, v in self.colname_dict.items()}
-
- def make_excels(self):
- """
- 将每个数据文件单独转换为excel数据表用于分析每份数据
- :return:
- """
- for file in self.files:
- with open(file, 'r') as fin:
- res = json.loads(fin.read())
- dfx = pd.DataFrame(res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'])
- dfx['filename'] = file.stem
- dfx[['year', 'part']] = dfx['filename'].str.split('_', expand=True)
- dfx['C_count'] = dfx['C'].map(len)
- writer = pd.ExcelWriter(self.file_path / f'{file.stem}.xlsx')
- dfx.to_excel(writer, sheet_name='data')
- for k, v in res['results'][0]['result']['data']['dsr']['DS'][0]['ValueDicts'].items():
- dfx = pd.Series(v).to_frame()
- dfx.to_excel(writer, sheet_name=k)
- writer.save()
- print('所有数据均已转为Excel')
-
- def make_single_excel(self):
- """
- 将所有数据生成一份excel文件,不包含字典
- :return:
- """
- # 合并成整个文件
- df = pd.DataFrame()
- for file in self.files:
- with open(file, 'r') as fin:
- res = json.loads(fin.read())
- dfx = pd.DataFrame(res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'])
- dfx['filename'] = file.stem
- dfx[['year', 'part']] = dfx['filename'].str.split('_', expand=True)
- dfx['C_count'] = dfx['C'].map(len)
- df = pd.concat([df, dfx])
- return df
-
- def get_cols_dict(self):
- """
- 读取列关系的字典
- :return:
- """
- # 读取列字典表
- self.cols_dict = pd.read_excel(self.file_path.parent / 'cols_dict.xlsx')
- self.cols_dict.set_index('R', inplace=True)
- self.cols_dict = self.cols_dict.dropna()
- self.cols_dict.drop(columns=['C_count', ], inplace=True)
- self.cols_dict.columns = [col.split(':')[-1] for col in self.cols_dict.columns]
- self.cols_dict = self.cols_dict.astype('int')
-
- def make_dataframe(self, filename):
- """
- 读取TXT文件,转换成dataframe
- :param filename: 需要转换的文件
- :return:
- """
- with open(filename, 'r') as fin:
- res = json.loads(fin.read())
- df0 = pd.DataFrame(res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'])
- df0['R'] = df0['R'].fillna(0)
- df0['R'] = df0['R'].map(int)
- values_dict = res['results'][0]['result']['data']['dsr']['DS'][0]['ValueDicts']
-
- dfx = []
- for idx in df0.index:
- row_value = df0.loc[idx, 'C'].copy()
- cols = self.cols_dict.loc[int(df0.loc[idx, 'R'])].to_dict()
- row = {}
- for col in ['License Type', 'License Number', 'Manufacturer Full Name', 'Manufacturer ID', 'City', 'State',
- 'Full Name', 'Payment Category', 'Disclosure Year', 'Covered Recipient ID', 'Amount of Payment',
- 'Number of Events Reflected']:
- v = cols.get(col)
- if v:
- value = row_value.pop(0)
- if col in self.colname_dict.values():
- if not isinstance(value, str):
- value_list = values_dict.get(self.colname_dict_T.get(col), [])
- value = value_list[value]
- row[col] = value
- else:
- row[col] = None
- row['R'] = int(df0.loc[idx, 'R'])
- dfx.append(row)
-
- dfx = pd.DataFrame(dfx)
- dfx = dfx.fillna(method='ffill')
- dfx[['Disclosure Year', 'Number of Events Reflected']] = dfx[
- ['Disclosure Year', 'Number of Events Reflected']].astype('int')
- dfx = dfx[['Covered Recipient ID', 'Full Name', 'License Type', 'License Number', 'Manufacturer ID',
- 'Manufacturer Full Name', 'City',
- 'State', 'Payment Category', 'Amount of Payment', 'Number of Events Reflected', 'Disclosure Year',
- 'R']]
- return dfx
-
- def parse_data(self, out_name: str = None):
- """
- 解析合并数据
- :param out_name: 输出的文件名
- :return:
- """
- df = pd.DataFrame()
- for n, f in enumerate(self.files):
- dfx = self.make_dataframe(f)
- df = pd.concat([df, dfx])
- print(f'完成第{n + 1}个文件,剩余{len(self.files) - n - 1}个,共{len(self.files)}个')
- df.drop(columns='R').to_csv(self.file_path / f'{out_name}.csv', index=False)
- return df
方案二
使用方案二处理数据时,在进行数据后验后发现,还有两个细节问题需要解决:
一是返回值中出现了新的关键字“Ø”,经手工验证才知道代表输出的行中,存在本身就是空值的情况,遍历数据后,发现只有出现3个不同值(60, 128, 2048),因此,手工制作了col_dict(详见代码)。\
- class ParseDatav2:
- """
- 解析数据的对象第二版,将按行爬取的的json文件,转换成dataframe,增量写入csv文件,
- 因每次请求一行,首行数据不存在与上一行相同情形,因此,除个别本身无数据情况,绝大多数均为完整的12列数据,
- """
- def __init__(self):
- """
- 初始化
- """
- # 初始化一行的dataframe,
- self.row = pd.DataFrame([
- 'Covered Recipient ID', 'Full Name', 'License Type', 'License Number', 'Manufacturer ID',
- 'Manufacturer Full Name', 'City', 'State', 'Payment Category', 'Amount of Payment',
- 'Number of Events Reflected', 'Disclosure Year'
- ]).set_index(0)
- self.row[0] = None
- self.row = self.row.T
- self.row['idx'] = None
- # 根据 Ø 值的不同选择不同的列,目前仅三种不同的Ø值,注0为默认值,指包含所有列
- self.col_dict = {
- # 完整的12列
- 0: ['License Type', 'License Number', 'Manufacturer Full Name', 'Manufacturer ID', 'City', 'State',
- 'Full Name', 'Payment Category', 'Disclosure Year', 'Covered Recipient ID', 'Amount of Payment',
- 'Number of Events Reflected'],
- # 有4列是空值,分别是 'Manufacturer Full Name', 'Manufacturer ID', 'City', 'State'
- 60: ['License Type', 'License Number',
- 'Full Name', 'Payment Category', 'Disclosure Year', 'Covered Recipient ID', 'Amount of Payment',
- 'Number of Events Reflected'],
- # 有1列是空值,是 'Payment Category'
- 128: ['License Type', 'License Number', 'Manufacturer Full Name', 'Manufacturer ID', 'City', 'State',
- 'Full Name', 'Disclosure Year', 'Covered Recipient ID', 'Amount of Payment',
- 'Number of Events Reflected'],
- # 有1列是空值,是 'Number of Events Reflected'
- 2048: ['License Type', 'License Number', 'Manufacturer Full Name', 'Manufacturer ID', 'City', 'State',
- 'Full Name', 'Payment Category', 'Disclosure Year', 'Covered Recipient ID', 'Amount of Payment'],
- }
- # 列名转换字典
- self.colname_dict = {
- 'License Type': 'D0',
- 'License Number': 'D1',
- 'Manufacturer Full Name': 'D2',
- 'Manufacturer ID': 'D3',
- 'City': 'D4',
- 'State': 'D5',
- 'Full Name': 'D6',
- 'Payment Category': 'D7',
- 'Covered Recipient ID': 'D8'
- }
- # 储存爬取的json文件的路径
- self.data_path = pl.Path('./tmp')
- # 获取json文件的迭代器
- self.files = self.data_path.glob('*.txt')
- # 初始化输出文件的名称及路径
- self.file_name = self.data_path.parent / 'data.csv'
-
- def create_csv(self):
- """
- 先输出一个CSV文件头用于增量写入数据
- :return:
- """
- self.row.drop(0, axis=0).to_csv(self.file_name, index=False)
-
- def parse_data(self, filename: pl.Path):
- """
- 读取按1行数据请求获取的json文件,一行数据
- :param filename: json文件的路径
- :return: None
- """
- row = self.row.copy() # 复制一行dataframe用于后续修改
- res = PageSpider.read_json(filename)
- # 获取数据中的valuedicts
- valuedicts = res['results'][0]['result']['data']['dsr']['DS'][0]['ValueDicts']
- # 获取数据中每行的数据
- row_values = res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'][0]['C']
- # 获取数据中的'Ø'值(若有),该值代表输出的行中,存在空白部分,用于确定数据列
- cols = ic(self.col_dict.get(
- res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'][0].get('Ø', 0)
- ))
- # 遍历每行数据,修改row这个dataframe的值
- for col, value in zip(cols, row_values):
- ic(col, value)
- colname = self.colname_dict.get(col) # colname转换,D0~D8
- if colname: # 如果非空,则需要转换值
- value = valuedicts.get(self.colname_dict.get(col))[0]
- # 修改dataframe数据
- row.loc[0, col] = value
- # 写入索引值
- row['idx'] = int(filename.stem.split('_')[-1].replace('part', ''))
- return row
-
- def run(self):
- """
- 运行写入程序
- """
- self.create_csv()
- for idx, filename in enumerate(self.files):
- row = self.parse_data(filename)
- row.to_csv(self.file_name, mode='a', header=None, index=False)
- print(f'第{idx + 1}个文件{filename.stem}写入表格成功')
- print('全部文件写入完成')
二是每行数据请求,nrows需要设置为2,而最后一行数据无法通过该方式获取,因此,需要从最后一个返回的json数据中解析出最后一行数据(详见LastRow类)
- class LastRow:
- """
- 获取并写入最后一行数据的类
- 由于每次请求一行数据的方式,存在缺陷,无法获取到最后一行数据,
- 本方法是对最后一个能够获取的json(倒数第二行)进行解析,取得最后一行数据,
- 本方法存在缺陷,即默认最后一行“Amount of Payment”列值一定与倒数第二行不同,
- 目前2009年至2020年共12年的数据中,均满足上述条件,没有出错。
- 除本方法外,还可以通过逆转排序请求的方式,获取最后一行数据
- """
- def __init__(self):
- """
- 初始化
- """
- self.file_path = pl.Path('./tmp') # 存储爬取json数据的路径
- self.files_df = pd.DataFrame() # 初始化最后一份请求的dataframe
- # 列名对应的字典
- self.colname_dict = {
- 'D0': 'License Type',
- 'D1': 'License Number',
- 'D2': 'Manufacturer Full Name',
- 'D3': 'Manufacturer ID',
- 'D4': 'City',
- 'D5': 'State',
- 'D6': 'Full Name',
- 'D7': 'Payment Category',
- 'year': 'Disclosure Year',
- 'D8': 'Covered Recipient ID',
- 'M0': 'Amount of Payment',
- 'M1': 'Number of Events Reflected'
- }
- self.data = pd.DataFrame() # 初始化最后一行数据data
-
- def get_last_file(self):
- """
- 遍历文件夹,取得最后一份请求的dataframe
- """
- self.files_df = pd.DataFrame(list(self.file_path.glob('*.txt')), columns=['filename'])
- self.files_df[['year', 'idx']] = self.files_df['filename'].map(lambda x: x.stem).str.split('_', expand=True)
- self.files_df['idx'] = self.files_df['idx'].str.replace('part', '')
- self.files_df['idx'] = self.files_df['idx'].astype(int)
- self.files_df.sort_values(by=['year', 'idx'], inplace=True)
- self.files_df = self.files_df.drop_duplicates('year', keep='last')
-
- def get_last_row(self, ser: pd.Series) -> pd.DataFrame:
- """
- 解析文件,获取最后一行的数据
- :param ser: 一行文件信息的series
- """
- # 读取json数据
- res = PageSpider.read_json(ser['filename'])
- # 获取values_dict
- values_dict = res['results'][0]['result']['data']['dsr']['DS'][0]['ValueDicts']
- # 获取文件中的第一行数据
- row_values = res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'][0]['C']
- # 获取文件中的下一行数据,因文件是倒数第二行的数据,因此下一行即为最后一行
- next_row_values = res['results'][0]['result']['data']['dsr']['DS'][0]['PH'][0]['DM0'][1]['C']
- # 初始化Series
- row = pd.Series()
- # 解析数据填充series
- for k, col in self.colname_dict.items():
- value = row_values.pop(0)
- if k.startswith('D'): # 如果K值是D开头
- values = values_dict[k]
- if len(values) == 2:
- value = next_row_values.pop(0)
- value = values[-1]
- elif k == 'year':
- pass
- else:
- if next_row_values:
- value = next_row_values.pop(0)
- row[col] = value
- row['idx'] = ser['idx'] + 1
- row = row.to_frame().T
- return row
-
- def run(self):
- """
- 运行获取最后一行数据的方法
- """
- self.get_last_file()
- for i in self.files_df.index:
- self.data = pd.concat([self.data, self.get_last_row(self.files_df.loc[i])])
- self.data = self.data[[
- 'Covered Recipient ID', 'Full Name', 'License Type', 'License Number', 'Manufacturer ID',
- 'Manufacturer Full Name', 'City', 'State', 'Payment Category', 'Amount of Payment',
- 'Number of Events Reflected', 'Disclosure Year', 'idx'
- ]]
- filename = self.file_path.parent / 'data.csv'
- self.data.to_csv(filename, mode='a', index=False, header=None)
- return self.data
结果展示

2010年

2015年

2020年尾部
延伸思考
如果将上述方案一与方案二结合,整理出所有不同R关系的行样例,使用方案二爬取少量的部分示例,然后推导出完整的R关系字典,再使用方案一的方法进行爬取解析,将大大节约时间。该方式在数据量远远超过当前数量时,可以考虑使用。
完成整个项目过程中历经了:暗爽(不到1小时就完成了爬虫部分功能)->迷茫(JS逆向失败,无法总结R关系规律)->焦虑与烦躁(担心无法完成任务,手工查询规则5个多小时)->开窍(复盘过程中突然发现新思路)一系列过程。最终结果还是较为顺利的完成了整个任务,而最大的感触还是思路的开拓:一条路走不通时,也许换个方向就能解决问题(注:count参数500一开始就使用了,只是一直在增加请求的行数,而一直没有想到减少请求的行数这么一个小小的改变,就能带来巨大的突破)。
