• 傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导


    傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导

    0、Part4和Part5的复习

    0.1、Part4复习

    参考链接:傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

    对于周期为 T T T,即 f ( t ) = f ( t + T ) f\left( t \right) = f\left( {t + T} \right) f(t)=f(t+T)的函数,它的傅里叶级数的复数展开形式如下:

    f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t f\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in\omega t}}} f(t)=n=cneinωt, 其中, c n = 1 T ∫ 0 T f ( t ) e − i n ω t d t {c_n} = \frac{1}{T}\int_0^T {f\left( t \right){e^{ - in\omega t}}dt} cn=T10Tf(t)einωtdt

    重写一下
    f T ( t ) = ∑ n = − ∞ ∞ c n e i n ω 0 t ( 1 ) {f_T}\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in{\omega _0}t}}} {\rm{(1)}} fT(t)=n=cneinω0t(1) ω 0 = 2 π T {\omega _0} = \frac{{2\pi }}{T} ω0=T2π为角频率。

    c n = 1 T ∫ 0 T f T ( t ) e − i n ω 0 t d t = 1 T ∫ − T 2 T 2 f T ( t ) e − i n ω 0 t d t ( 2 ) {c_n} = \frac{1}{T}\int_0^T {{f_T}\left( t \right){e^{ - in{\omega _0}t}}dt} = \frac{1}{T}\int_{ - \frac{T}{2}}^{\frac{T}{2}} {{f_T}\left( t \right){e^{ - in{\omega _0}t}}dt} {\rm{(2)}} cn=T10TfT(t)einω0tdt=T12T2TfT(t)einω0tdt(2)

    在上式中, ∑ n = − ∞ ∞ e i n ω 0 t \sum\limits_{n = - \infty }^\infty {{e^{in{\omega _0}t}}} n=einω0t可以理解一种规则,而 c n c_n cn呢,我们可以理解为它定义了函数, c n = a + b i {c_n} = a + bi cn=a+bi是一个复数。

    0.2、Part5复习

    参考链接:傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换

    f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} {e^{i\omega t}}d\omega } f(t)=2π1f(t)etdtetdω

    F ( ω ) ≜ ∫ − ∞ ∞ f ( t ) e − i ω t d t F\left( \omega \right) \triangleq \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} F(ω)f(t)etdt , 这就是傅里叶变换

    f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right){e^{i\omega t}}d\omega } f(t)=2π1F(ω)etdω, 这就是傅里叶逆变换

    这都是连续时间的傅里叶变换/逆变换,实际信号没法儿用。

    1、离散傅里叶变换推导

    我们现在存在一个离散的时间序列 x ( n ) x\left( n \right) x(n),其中呢, n = 0 , 1 , 2 , ⋯   , N − 1 n = 0,1,2, \cdots ,N - 1 n=0,1,2,,N1,采样间隔为 T T T

    下面,我们假设存在一个函数 f N T ( t ) {f_{NT}}\left( t \right) fNT(t),使得 x ( n ) = f N T ( n T ) x\left( n \right) = {f_{NT}}\left( {nT} \right) x(n)=fNT(nT),并且 f N T ( t ) {f_{NT}}\left( t \right) fNT(t)是一个周期函数,周期为 N T NT NT,即 f N T ( t ) = f N T ( t + N T ) {f_{NT}}\left( t \right) = {f_{NT}}\left( {t + NT} \right) fNT(t)=fNT(t+NT)

    下面根据Part4对于傅里叶级数的复数形式的推导结果,进行进一步的推导

    f T ( t ) = ∑ n = − ∞ ∞ c n e i n ω 0 t = ∑ n = − ∞ ∞ [ ( 1 T ∫ 0 T f T ( t ) e − i n ω 0 t d t ) ⋅ e i n ω 0 t ] {f_T}\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in{\omega _0}t}}} = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{T}\int_0^T {{f_T}\left( t \right){e^{ - in{\omega _0}t}}dt} } \right) \cdot {e^{in{\omega _0}t}}} \right]} fT(t)=n=cneinω0t=n=[(T10TfT(t)einω0tdt)einω0t]

    我们将周期为 N T NT NT的函数 f N T ( t ) = f N T ( t + N T ) {f_{NT}}\left( t \right) = {f_{NT}}\left( {t + NT} \right) fNT(t)=fNT(t+NT)带入到上式当中,可得

    f N T ( t ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n ω 0 t d t ) ⋅ e i n ω 0 t ] {f_{NT}}\left( t \right) = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in{\omega _0}t}}dt} } \right) \cdot {e^{in{\omega _0}t}}} \right]} fNT(t)=n=[(NT10NTfNT(t)einω0tdt)einω0t]

    注意到Part4中原定定义是 ω 0 = 2 π T {\omega _0} = \frac{{2\pi }}{T} ω0=T2π,由于现在我们的周期是 N T NT NT,注意: N T NT NT中的 T T T是采样间隔的意思, 2 π T \frac{{2\pi }}{T} T2π中的 T T T是周期的意思。

    在所以此处 ω 0 {\omega _0} ω0应该为 ω 0 = 2 π N T {\omega _0} = \frac{{2\pi }}{{NT}} ω0=NT2π,将 ω 0 = 2 π N T {\omega _0} = \frac{{2\pi }}{{NT}} ω0=NT2π进一步带入到上式当中,可得

    f N T ( t ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t ) ⋅ e i n 2 π N T t ] {f_{NT}}\left( t \right) = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} } \right) \cdot {e^{in\frac{{2\pi }}{{NT}}t}}} \right]} fNT(t)=n=[(NT10NTfNT(t)einNT2πtdt)einNT2πt]

    观察公式中的()部分,其实它是等于 c n = 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t {c_n} = \frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} cn=NT10NTfNT(t)einNT2πtdt

    再观察Part5连续时间傅里叶变换的结果

    f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} {e^{i\omega t}}d\omega } f(t)=2π1f(t)etdtetdω

    F ( ω ) ≜ ∫ − ∞ ∞ f ( t ) e − i ω t d t F\left( \omega \right) \triangleq \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} F(ω)f(t)etdt傅里叶变换

    f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right){e^{i\omega t}}d\omega } f(t)=2π1F(ω)etdω傅里叶逆变换

    两次积分的里面那一项, ∫ − ∞ ∞ f ( t ) e − i ω t d t \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} f(t)etdt 就是傅里叶变换 ≜ F ( ω ) \triangleq F\left( \omega \right) F(ω)

    再观察 f N T ( t ) f_{NT}\left( t \right) fNT(t)的傅里叶级数表达。

    f N T ( t ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t ) ⋅ e i n 2 π N T t ] {f_{NT}}\left( t \right) = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} } \right) \cdot {e^{in\frac{{2\pi }}{{NT}}t}}} \right]} fNT(t)=n=[(NT10NTfNT(t)einNT2πtdt)einNT2πt]

    外层是 n n n − ∞ { - \infty } + ∞ { + \infty } +的累积和,内层也是一个积分。如果把累加和看成是一个积分,那么也是两次积分。

    我们的目的是为了推导离散傅里叶变换

    那么我们是不是可以把同样把 内层的积分 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t \frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} NT10NTfNT(t)einNT2πtdt 定义成 周期为 N T NT NT的函数的傅里叶变换 ≜ F ( ω ) \triangleq F\left( \omega \right) F(ω)呢? 答案是肯定的

    进一步推导,定义:

    F ( ω ) ≜ 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t F\left( \omega \right) \triangleq \frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} F(ω)NT10NTfNT(t)einNT2πtdt

    我们都知道,定积分,是可以用面积法来近似的

    ∫ 0 N T g ( t ) d t = lim ⁡ T → 0 ∑ k = 0 N − 1 g ( k T ) ⋅ T \int_0^{NT} {g\left( t \right)dt = \mathop {\lim }\limits_{T \to 0} \sum\limits_{k = 0}^{N - 1} {g\left( {kT} \right) \cdot T} } 0NTg(t)dt=T0limk=0N1g(kT)T

    我们令 g ( t ) = f N T ( t ) e − i n 2 π N T t g\left( t \right) = {f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}} g(t)=fNT(t)einNT2πt

    那么

    F ( ω ) = 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t = 1 N T lim ⁡ T → 0 ∑ k = 0 N − 1 g ( k T ) ⋅ T = 1 N T lim ⁡ T → 0 ∑ k = 0 N − 1 f N T ( k T ) e − i n 2 π N T k T ⋅ T = 1 N lim ⁡ T → 0 ∑ k = 0 N − 1 f N T ( k T ) e − i n 2 π k N = 1 N lim ⁡ T → 0 ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N

    F(ω)=1NT0NTfNT(t)ein2πNTtdt=1NTlimT0k=0N1g(kT)T=1NTlimT0k=0N1fNT(kT)ein2πNTkTT=1NlimT0k=0N1fNT(kT)ein2πkN=1NlimT0k=0N1x(k)ein2πkN" role="presentation" style="position: relative;">F(ω)=1NT0NTfNT(t)ein2πNTtdt=1NTlimT0k=0N1g(kT)T=1NTlimT0k=0N1fNT(kT)ein2πNTkTT=1NlimT0k=0N1fNT(kT)ein2πkN=1NlimT0k=0N1x(k)ein2πkN
    F(ω)=NT10NTfNT(t)einNT2πtdt=NT1T0limk=0N1g(kT)T=NT1T0limk=0N1fNT(kT)einNT2πkTT=N1T0limk=0N1fNT(kT)einN2πk=N1T0limk=0N1x(k)einN2πk

    即:

    F ( ω ) = 1 N lim ⁡ T → 0 ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N F\left( \omega \right) = \frac{1}{N}\mathop {\lim }\limits_{T \to 0} \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} F(ω)=N1T0limk=0N1x(k)einN2πk

    在Part5的推导中,我们知道 ω = n ω 0 \omega = n{\omega _0} ω=nω0,根据上面的推导,我们知道 ω 0 = 2 π N T {\omega _0} = \frac{{2\pi }}{{NT}} ω0=NT2π 因此, ω = n ⋅ 2 π N T \omega = n \cdot \frac{{2\pi }}{{NT}} ω=nNT2π

    最终得到

    F ( n ⋅ 2 π N T ) = 1 N lim ⁡ T → 0 ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N F\left( {n \cdot \frac{{2\pi }}{{NT}}} \right) = \frac{1}{N}\mathop {\lim }\limits_{T \to 0} \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} F(nNT2π)=N1T0limk=0N1x(k)einN2πk

    X ( n ) = F ( n ⋅ 2 π N T ) X\left( n \right) = F\left( {n \cdot \frac{{2\pi }}{{NT}}} \right) X(n)=F(nNT2π)

    就初步得到了 离散傅里叶变换的形式

    X ( n ) = 1 N ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N , T → 0 X\left( n \right) = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} ,T \to 0 X(n)=N1k=0N1x(k)einN2πk,T0

    2、离散傅里叶逆变换推导

    根据傅里叶级数的定义, n n n是从 − ∞ -\infty + ∞ +\infty +的整数,那么可以看出 n ⋅ 2 π N T n \cdot \frac{{2\pi }}{{NT}} nNT2π也是离散的一些点。所以我们可以认为 X ( n ) X\left( n \right) X(n)就是离散傅里叶变换了。

    那么对于离散的傅里叶逆变换,也能顺理成章的推导出。

    注 : 使用 m T mT mT来代替前文中的 n T nT nT,是为了在后续推导中更便于理解。

    f N T ( t ) = lim ⁡ T → 0 f N T ( m T ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t ) ⋅ e i n 2 π N T t ] , m ∈ [ − ∞ , + ∞ ] = ∑ n = − ∞ ∞ [ ( 1 N lim ⁡ T → 0 ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N ) ⋅ e i n 2 π N T t ] , t = m T = ∑ n = − ∞ ∞ [ ( 1 N ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N ) ⋅ e i n 2 π N T m T ] , T → 0 = ∑ n = − ∞ ∞ [ X ( n ) ⋅ e i n 2 π m N ] , T → 0

    fNT(t)=limT0fNT(mT)=n=[(1NT0NTfNT(t)ein2πNTtdt)ein2πNTt],m[,+]=n=[(1NlimT0k=0N1x(k)ein2πkN)ein2πNTt],t=mT=n=[(1Nk=0N1x(k)ein2πkN)ein2πNTmT],T0=n=[X(n)ein2πmN],T0" role="presentation" style="position: relative;">fNT(t)=limT0fNT(mT)=n=[(1NT0NTfNT(t)ein2πNTtdt)ein2πNTt],m[,+]=n=[(1NlimT0k=0N1x(k)ein2πkN)ein2πNTt],t=mT=n=[(1Nk=0N1x(k)ein2πkN)ein2πNTmT],T0=n=[X(n)ein2πmN],T0
    fNT(t)=T0limfNT(mT)=n=[(NT10NTfNT(t)einNT2πtdt)einNT2πt],m[,+]=n=[(N1T0limk=0N1x(k)einN2πk)einNT2πt],t=mT=n=[(N1k=0N1x(k)einN2πk)einNT2πmT],T0=n=[X(n)einN2πm],T0

    注意:其中 t ∈ [ − ∞ , + ∞ ] ⇒ m = t T ∈ [ − ∞ , + ∞ ] t \in \left[ { - \infty , + \infty } \right] \Rightarrow m = \frac{t}{T} \in \left[ { - \infty , + \infty } \right] t[,+]m=Tt[,+]的,而公式中的累加和 n n n的上下限为 [ − ∞ , + ∞ ] \left[ { - \infty , + \infty } \right] [,+],但 x ( m ) x\left( m \right) x(m) m m m不是 [ − ∞ , + ∞ ] \left[ { - \infty , + \infty } \right] [,+]

    根据前文的定义:

    x ( m ) = f N T ( m T ) , m = 0 , 1 , 2 , 3 , ⋯   , N − 1 x\left( m \right) = {f_{NT}}\left( {mT} \right),m = 0,1,2,3, \cdots ,N - 1 x(m)=fNT(mT),m=0,1,2,3,,N1

    t = lim ⁡ T → 0 m T ∈ { 0 , T , 2 T , 3 T , ⋯   , ( N − 1 ) T } ⇒ m = t T ∈ [ 0 , 1 , 2 , 3 , ⋯   , ( N − 1 ) ] t = \mathop {\lim }\limits_{T \to 0} mT \in \left\{ {0,T,2T,3T, \cdots ,\left( {N - 1} \right)T} \right\} \Rightarrow m = \frac{t}{T} \in \left[ {0,1,2,3, \cdots ,\left( {N - 1} \right)} \right] t=T0limmT{0,T,2T,3T,,(N1)T}m=Tt[0,1,2,3,,(N1)]

    因此离散傅里叶逆变换中的上下限应该为 [ 0 , N − 1 ] \left[ {0,N - 1} \right] [0,N1]。 即

    x ( m ) = f N T ( m T ) ≜ ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = {f_{NT}}\left( {mT} \right) \triangleq \sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=fNT(mT)n=0N1[X(n)einN2πm]

    口说无凭,我给出证明。证明: F − 1 { F [ x ( m ) ] } = x ( m ) {F^{ - 1}}\left\{ {F\left[ {x\left( m \right)} \right]} \right\} = x\left( m \right) F1{F[x(m)]}=x(m)

    F − 1 { F [ f N T ( m T ) ] } = ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] = ∑ n = 0 N − 1 ( 1 N ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N ) ⋅ e i n 2 π m N = 1 N ∑ n = 0 N − 1 [ x ( 0 ) e − i n 2 π ⋅ 0 N + x ( 1 ) e − i n 2 π ⋅ 1 N + x ( 2 ) e − i n 2 π ⋅ 2 N + ⋯ + x ( a ) e − i n 2 π ⋅ a N + ⋯ x ( N − 1 ) e − i n 2 π ⋅ N − 1 N ] ⋅ e i n 2 π m N = 1 N × { ( x ( 0 ) e − i n 2 π ⋅ 0 N + x ( 1 ) e − i n 2 π ⋅ 1 N + x ( 2 ) e − i n 2 π ⋅ 2 N + ⋯ + x ( a ) e − i n 2 π ⋅ a N + ⋯ x ( N − 1 ) e − i n 2 π ⋅ N − 1 N ) e i 0 2 π m N + ( x ( 0 ) e − i n 2 π ⋅ 0 N + x ( 1 ) e − i n 2 π ⋅ 1 N + x ( 2 ) e − i n 2 π ⋅ 2 N + ⋯ + x ( a ) e − i n 2 π ⋅ a N + ⋯ x ( N − 1 ) e − i n 2 π ⋅ N − 1 N ) e i 1 2 π m N + ( x ( 0 ) e − i n 2 π ⋅ 0 N + x ( 1 ) e − i n 2 π ⋅ 1 N + x ( 2 ) e − i n 2 π ⋅ 2 N + ⋯ + x ( a ) e − i n 2 π ⋅ a N + ⋯ x ( N − 1 ) e − i n 2 π ⋅ N − 1 N ) e i 2 2 π m N + ⋯ + ( x ( 0 ) e − i n 2 π ⋅ 0 N + x ( 1 ) e − i n 2 π ⋅ 1 N + x ( 2 ) e − i n 2 π ⋅ 2 N + ⋯ + x ( a ) e − i n 2 π ⋅ a N + ⋯ x ( N − 1 ) e − i n 2 π ⋅ N − 1 N ) e i b 2 π m N + ⋯ + ( x ( 0 ) e − i n 2 π ⋅ 0 N + x ( 1 ) e − i n 2 π ⋅ 1 N + x ( 2 ) e − i n 2 π ⋅ 2 N + ⋯ + x ( a ) e − i n 2 π ⋅ a N + ⋯ x ( N − 1 ) e − i n 2 π ⋅ N − 1 N ) e i ( N − 1 ) 2 π m N }

    \begin{array}{l} {F^{ - 1}}\left\{ {F\left[ { {f_{NT}}\left( {mT} \right)} \right]} \right\} = \sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{ {2\pi m}}{N}}}} \right]} = \sum\limits_{n = 0}^{N - 1} {\left( {\frac{1}{N}\sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{ {2\pi k}}{N}}}} } \right) \cdot {e^{in\frac{ {2\pi m}}{N}}}} \\\\ = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left[ {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right] \cdot {e^{in\frac{ {2\pi m}}{N}}}} \\\\ = \frac{1}{N} \times \left\{ \begin{array}{l} \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i0\frac{ {2\pi m}}{N}}} + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i1\frac{ {2\pi m}}{N}}} + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i2\frac{ {2\pi m}}{N}}} + \\\\ \cdots + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{ib\frac{ {2\pi m}}{N}}} + \\\\ \cdots + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} \end{array}" role="presentation" style="position: relative;">\begin{array}{l} {F^{ - 1}}\left\{ {F\left[ { {f_{NT}}\left( {mT} \right)} \right]} \right\} = \sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{ {2\pi m}}{N}}}} \right]} = \sum\limits_{n = 0}^{N - 1} {\left( {\frac{1}{N}\sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{ {2\pi k}}{N}}}} } \right) \cdot {e^{in\frac{ {2\pi m}}{N}}}} \\\\ = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left[ {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right] \cdot {e^{in\frac{ {2\pi m}}{N}}}} \\\\ = \frac{1}{N} \times \left\{ \begin{array}{l} \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i0\frac{ {2\pi m}}{N}}} + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i1\frac{ {2\pi m}}{N}}} + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i2\frac{ {2\pi m}}{N}}} + \\\\ \cdots + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{ib\frac{ {2\pi m}}{N}}} + \\\\ \cdots + \\\\ \left( {x\left( 0 \right){e^{ - in\frac{ {2\pi \cdot 0}}{N}}} + x\left( 1 \right){e^{ - in\frac{ {2\pi \cdot 1}}{N}}} + x\left( 2 \right){e^{ - in\frac{ {2\pi \cdot 2}}{N}}} + \cdots + x\left( a \right){e^{ - in\frac{ {2\pi \cdot a}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - in\frac{ {2\pi \cdot N - 1}}{N}}}} \right){e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} \end{array}
    \right\} \end{array} F1{F[fNT(mT)]}=n=0N1[X(n)einN2πm]=n=0N1(N1k=0N1x(k)einN2πk)einN2πm=N1n=0N1[x(0)einN2π0+x(1)einN2π1+x(2)einN2π2++x(a)einN2πa+x(N1)einN2πN1]einN2πm=N1× (x(0)einN2π0+x(1)einN2π1+x(2)einN2π2++x(a)einN2πa+x(N1)einN2πN1)ei0N2πm+(x(0)einN2π0+x(1)einN2π1+x(2)einN2π2++x(a)einN2πa+x(N1)einN2πN1)ei1N2πm+(x(0)einN2π0+x(1)einN2π1+x(2)einN2π2++x(a)einN2πa+x(N1)einN2πN1)ei2N2πm++(x(0)einN2π0+x(1)einN2π1+x(2)einN2π2++x(a)einN2πa+x(N1)einN2πN1)eibN2πm++(x(0)einN2π0+x(1)einN2π1+x(2)einN2π2++x(a)einN2πa+x(N1)einN2πN1)ei(N1)N2πm

    注:1、里面的求和是 n n n不变,所以展开里面的累积和时, n n n保持不动,k待入数值。 外层的求和是 m m m不变。这时候要把 n n n带入数值。

    = 1 N × { ( x ( 0 ) e − i 0 2 π ⋅ 0 N e i 0 2 π m N + x ( 1 ) e − i 0 2 π ⋅ 1 N e i 0 2 π m N + ⋯ + x ( a ) e − i 0 2 π ⋅ a N e i 0 2 π m N + ⋯ x ( N − 1 ) e − i 0 2 π ⋅ N − 1 N e i 0 2 π m N ) + ( x ( 0 ) e − i 1 2 π ⋅ 0 N e i 1 2 π m N + x ( 1 ) e − i 1 2 π ⋅ 1 N e i 1 2 π m N + ⋯ + x ( a ) e − i 1 2 π ⋅ a N e i 1 2 π m N + ⋯ x ( N − 1 ) e − i 1 2 π ⋅ N − 1 N e i 1 2 π m N ) + ⋯ + ( x ( 0 ) e − i b 2 π ⋅ 0 N e i b 2 π m N + x ( 1 ) e − i b 2 π ⋅ 1 N e i b 2 π m N + ⋯ + x ( a ) e − i b 2 π ⋅ a N e i b 2 π m N + ⋯ x ( N − 1 ) e − i b 2 π ⋅ N − 1 N e i b 2 π m N ) + ⋯ + ( x ( 0 ) e − i ( N − 1 ) 2 π ⋅ 0 N e i ( N − 1 ) 2 π m N + x ( 1 ) e − i ( N − 1 ) 2 π ⋅ 1 N e i ( N − 1 ) 2 π m N + ⋯ + x ( a ) e − i ( N − 1 ) 2 π ⋅ a N e i ( N − 1 ) 2 π m N + ⋯ + x ( N − 1 ) e − i ( N − 1 ) 2 π ⋅ N − 1 N e i ( N − 1 ) 2 π m N ) } = \frac{1}{N} \times \left\{

    \begin{array}{l} \left( {x\left( 0 \right){e^{ - i0\frac{ {2\pi \cdot 0}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - i0\frac{ {2\pi \cdot 1}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - i0\frac{ {2\pi \cdot a}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - i0\frac{ {2\pi \cdot N - 1}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}}} \right) + \\\\ \left( {x\left( 0 \right){e^{ - i1\frac{ {2\pi \cdot 0}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - i1\frac{ {2\pi \cdot 1}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - i1\frac{ {2\pi \cdot a}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - i1\frac{ {2\pi \cdot N - 1}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}}} \right) + \\\\ \cdots + \\\\ \left( {x\left( 0 \right){e^{ - ib\frac{ {2\pi \cdot 0}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - ib\frac{ {2\pi \cdot 1}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - ib\frac{ {2\pi \cdot a}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - ib\frac{ {2\pi \cdot N - 1}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}}} \right) + \\\\ \cdots + \\\\ \left( \begin{array}{l} x\left( 0 \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot 0}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot 1}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot a}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} + \cdots + \\\\ x\left( {N - 1} \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot N - 1}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} \end{array}" role="presentation" style="position: relative;">\begin{array}{l} \left( {x\left( 0 \right){e^{ - i0\frac{ {2\pi \cdot 0}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - i0\frac{ {2\pi \cdot 1}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - i0\frac{ {2\pi \cdot a}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - i0\frac{ {2\pi \cdot N - 1}}{N}}}{e^{i0\frac{ {2\pi m}}{N}}}} \right) + \\\\ \left( {x\left( 0 \right){e^{ - i1\frac{ {2\pi \cdot 0}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - i1\frac{ {2\pi \cdot 1}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - i1\frac{ {2\pi \cdot a}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - i1\frac{ {2\pi \cdot N - 1}}{N}}}{e^{i1\frac{ {2\pi m}}{N}}}} \right) + \\\\ \cdots + \\\\ \left( {x\left( 0 \right){e^{ - ib\frac{ {2\pi \cdot 0}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - ib\frac{ {2\pi \cdot 1}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - ib\frac{ {2\pi \cdot a}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}} + \cdots x\left( {N - 1} \right){e^{ - ib\frac{ {2\pi \cdot N - 1}}{N}}}{e^{ib\frac{ {2\pi m}}{N}}}} \right) + \\\\ \cdots + \\\\ \left( \begin{array}{l} x\left( 0 \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot 0}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} + x\left( 1 \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot 1}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} + \cdots + x\left( a \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot a}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} + \cdots + \\\\ x\left( {N - 1} \right){e^{ - i\left( {N - 1} \right)\frac{ {2\pi \cdot N - 1}}{N}}}{e^{i\left( {N - 1} \right)\frac{ {2\pi m}}{N}}} \end{array}
    \right) \end{array} \right\} =N1× (x(0)ei0N2π0ei0N2πm+x(1)ei0N2π1ei0N2πm++x(a)ei0N2πaei0N2πm+x(N1)ei0N2πN1ei0N2πm)+(x(0)ei1N2π0ei1N2πm+x(1)ei1N2π1ei1N2πm++x(a)ei1N2πaei1N2πm+x(N1)ei1N2πN1ei1N2πm)++(x(0)eibN2π0eibN2πm+x(1)eibN2π1eibN2πm++x(a)eibN2πaeibN2πm+x(N1)eibN2πN1eibN2πm)++ x(0)ei(N1)N2π0ei(N1)N2πm+x(1)ei(N1)N2π1ei(N1)N2πm++x(a)ei(N1)N2πaei(N1)N2πm++x(N1)ei(N1)N2πN1ei(N1)N2πm

    注2:我们把普通项拿出来,看看:

    x ( a ) e − i b 2 π ⋅ a N e i b 2 π m N = x ( a ) e − i ( b 2 π ⋅ a N − b 2 π m N ) = x ( a ) e i 2 π N b ( m − a ) , a ∈ [ 0 , N − 1 ] , b ∈ [ 0 , N − 1 ] x\left( a \right){e^{ - ib\frac{{2\pi \cdot a}}{N}}}{e^{ib\frac{{2\pi m}}{N}}} = x\left( a \right){e^{ - i\left( {b\frac{{2\pi \cdot a}}{N} - b\frac{{2\pi m}}{N}} \right)}} = x\left( a \right){e^{i\frac{{2\pi }}{N}b\left( {m - a} \right)}},a \in \left[ {0,N - 1} \right],b \in \left[ {0,N - 1} \right] x(a)eibN2πaeibN2πm=x(a)ei(bN2πabN2πm)=x(a)eiN2πb(ma),a[0,N1],b[0,N1]

    将上式重新化简:

    = 1 N × { x ( 0 ) ∑ b = 0 N − 1 e − i 2 π N b ( m − 0 ) + x ( 1 ) ∑ b = 0 N − 1 e − i 2 π N b ( m − 1 ) + ⋯ + x ( a ) ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) + ⋯ + x ( N − 1 ) ∑ b = 0 N − 1 e − i 2 π N b ( m − ( N − 1 ) ) } = ∑ a = 0 N − 1 x ( a ) ∑ b = 0 N − 1 e − i 2 π N b ( m − a )

    =1N×{x(0)b=0N1ei2πNb(m0)+x(1)b=0N1ei2πNb(m1)++x(a)b=0N1ei2πNb(ma)++x(N1)b=0N1ei2πNb(m(N1))}=a=0N1x(a)b=0N1ei2πNb(ma)" role="presentation" style="position: relative;">=1N×{x(0)b=0N1ei2πNb(m0)+x(1)b=0N1ei2πNb(m1)++x(a)b=0N1ei2πNb(ma)++x(N1)b=0N1ei2πNb(m(N1))}=a=0N1x(a)b=0N1ei2πNb(ma)
    =N1×{x(0)b=0N1eiN2πb(m0)+x(1)b=0N1eiN2πb(m1)++x(a)b=0N1eiN2πb(ma)++x(N1)b=0N1eiN2πb(m(N1))}=a=0N1x(a)b=0N1eiN2πb(ma)

    注3:推导思路总结,先展到最开,然后先列相加,再行相加。

    m = a m=a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = ∑ b = 0 N − 1 1 = N \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = \sum\limits_{b = 0}^{N - 1} 1 = N b=0N1eiN2πb(ma)=b=0N11=N

    m ≠ a m \ne a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 0 \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = 0 b=0N1eiN2πb(ma)=0,下面证明

    证明:
    {

    假设存在一个公比为 q = e − i 2 π N ( m − a ) q = {e^{ - i\frac{{2\pi }}{N}\left( {m - a} \right)}} q=eiN2π(ma)的等比数列。

    A 1 = e − i 2 π N 0 ( m − a ) {A_1} = {e^{ - i\frac{{2\pi }}{N}0\left( {m - a} \right)}} A1=eiN2π0(ma), A 2 = e − i 2 π N 1 ( m − a ) {A_2} = {e^{ - i\frac{{2\pi }}{N}1\left( {m - a} \right)}} A2=eiN2π1(ma), A n = e − i 2 π N ( N − 1 ) ( m − a ) {A_n} = {e^{ - i\frac{{2\pi }}{N}\left( {N - 1} \right)\left( {m - a} \right)}} An=eiN2π(N1)(ma)

    ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = ∑ i = 1 n A i = A 1 − A n q 1 − q = 1 − e − i 2 π N ( N − 1 ) ( m − a ) e − i 2 π N ( m − a ) 1 − e − i 2 π N ( m − a ) = 1 − e − i 2 π N N ( m − a ) 1 − e − i 2 π N ( m − a ) = 1 − e − i 2 π ( m − a ) 1 − e − i 2 π N ( m − a )

    b=0N1ei2πNb(ma)=i=1nAi=A1Anq1q=1ei2πN(N1)(ma)ei2πN(ma)1ei2πN(ma)=1ei2πNN(ma)1ei2πN(ma)=1ei2π(ma)1ei2πN(ma)" role="presentation" style="position: relative;">b=0N1ei2πNb(ma)=i=1nAi=A1Anq1q=1ei2πN(N1)(ma)ei2πN(ma)1ei2πN(ma)=1ei2πNN(ma)1ei2πN(ma)=1ei2π(ma)1ei2πN(ma)
    b=0N1eiN2πb(ma)=i=1nAi=1qA1Anq=1eiN2π(ma)1eiN2π(N1)(ma)eiN2π(ma)=1eiN2π(ma)1eiN2πN(ma)=1eiN2π(ma)1ei2π(ma)

    m − a m-a ma 为整数, m ≠ a m \ne a m=a m − a ≠ 0 m-a \ne 0 ma=0 ,可得

    e − i 2 π ( m − a ) = cos ⁡ ( 2 π ( m − a ) ) − sin ⁡ ( 2 π ( m − a ) ) j = 1 − 0 j = 1 ⇒ ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 1 − 1 1 − e − i 2 π N ( m − a ) = 0 {e^{ - i2\pi \left( {m - a} \right)}} = \cos \left( {2\pi \left( {m - a} \right)} \right) - \sin \left( {2\pi \left( {m - a} \right)} \right)j = 1 - 0j = 1 \Rightarrow \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = \frac{{1 - 1}}{{1 - {e^{ - i\frac{{2\pi }}{N}\left( {m - a} \right)}}}} = 0 ei2π(ma)=cos(2π(ma))sin(2π(ma))j=10j=1b=0N1eiN2πb(ma)=1eiN2π(ma)11=0

    证毕。
    }

    m = a m=a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = ∑ b = 0 N − 1 1 = N \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = \sum\limits_{b = 0}^{N - 1} 1 = N b=0N1eiN2πb(ma)=b=0N11=N

    m ≠ a m \ne a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 0 \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = 0 b=0N1eiN2πb(ma)=0

    那么外层求和就只剩 x ( m ) x\left( m \right) x(m)项了。

    即:

    F − 1 { F [ x ( m ) ] } = 1 N ∑ a = 0 N − 1 x ( a ) ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 1 N x ( m ) ∑ b = 0 N − 1 1 = x ( m ) {F^{ - 1}}\left\{ {F\left[ {x\left( m \right)} \right]} \right\} = \frac{1}{N}\sum\limits_{a = 0}^{N - 1} {x\left( a \right)\sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} } = \frac{1}{N}x\left( m \right)\sum\limits_{b = 0}^{N - 1} 1 = x\left( m \right) F1{F[x(m)]}=N1a=0N1x(a)b=0N1eiN2πb(ma)=N1x(m)b=0N11=x(m) 证毕。

    把上述的推导先进行一个总结:

    X ( n ) = 1 N ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N X\left( n \right) = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} X(n)=N1k=0N1x(k)einN2πk

    x ( m ) = ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = \sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=n=0N1[X(n)einN2πm]

    注意到这个系数 1 N \frac{1}{N} N1 在非周期函数的连续时间傅里叶变换当中,也有一个系数 1 2 π \frac{1}{{2\pi }} 2π1 ,它是放到了傅里叶逆变换的。

    f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} {e^{i\omega t}}d\omega } f(t)=2π1f(t)etdtetdω

    F ( ω ) ≜ ∫ − ∞ ∞ f ( t ) e − i ω t d t F\left( \omega \right) \triangleq \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} F(ω)f(t)etdt傅里叶变换

    f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right){e^{i\omega t}}d\omega } f(t)=2π1F(ω)etdω傅里叶逆变换

    为了和连续时间的傅里叶变换契合,离散时间的傅里叶变换也把系数 1 N \frac{1}{N} N1放到逆变换中(本质上是等价的 F − 1 { F [ x ( m ) ] } {F^{ - 1}}\left\{ {F\left[ {x\left( m \right)} \right]} \right\} F1{F[x(m)]}还是 = x ( m ) = x\left( m \right) =x(m) )即

    X ( n ) = ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N X\left( n \right) = \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} X(n)=k=0N1x(k)einN2πk

    x ( m ) = 1 N ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=N1n=0N1[X(n)einN2πm]

    上述推导结果,除了用的符号不同,与书籍《快速傅里叶变换 算法与应用》中定义已经一模一样啦。

    在这里插入图片描述在这里插入图片描述

    3、推导总结

    最终离散傅里叶变换公式如下:

    X ( n ) = ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N X\left( n \right) = \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} X(n)=k=0N1x(k)einN2πk

    x ( m ) = 1 N ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=N1n=0N1[X(n)einN2πm]

    系列学习链接:欢迎大家点赞、收藏、留言讨论。

    傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明

    傅里叶级数与傅里叶变换_Part1_三角函数系的正交性

    傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数

    傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数

    傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式

    傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换

    傅里叶级数与傅里叶变换_Part6_离散傅里叶变换推导

    傅里叶级数与傅里叶变换_Part7_离散傅里叶变换的性质

  • 相关阅读:
    Eth - Trunk链路聚合
    iOS 用masonry布局Scrollview的问题,添加在scrollview的子控件约束失效
    (数据科学学习手札139)geopandas 0.11版本重要新特性一览
    react typescript @别名的使用
    FPGA面试题(5)
    gitlab本地备份(自动定时备份)
    Git 查看提交历史
    存档&改造【05】通过视图实现多表联查&理清层级关系
    工业网关如何实现MQTT、MODBUS、OPCUA、SQL、HTTP之间协议转换?
    svelte初探-上
  • 原文地址:https://blog.csdn.net/heqiunong/article/details/125884895