参考链接:傅里叶级数与傅里叶变换_Part4_傅里叶级数的复数形式
对于周期为 T T T,即 f ( t ) = f ( t + T ) f\left( t \right) = f\left( {t + T} \right) f(t)=f(t+T)的函数,它的傅里叶级数的复数展开形式如下:
f ( t ) = ∑ n = − ∞ ∞ c n e i n ω t f\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in\omega t}}} f(t)=n=−∞∑∞cneinωt, 其中, c n = 1 T ∫ 0 T f ( t ) e − i n ω t d t {c_n} = \frac{1}{T}\int_0^T {f\left( t \right){e^{ - in\omega t}}dt} cn=T1∫0Tf(t)e−inωtdt
重写一下
f
T
(
t
)
=
∑
n
=
−
∞
∞
c
n
e
i
n
ω
0
t
(
1
)
{f_T}\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in{\omega _0}t}}} {\rm{(1)}}
fT(t)=n=−∞∑∞cneinω0t(1),
ω
0
=
2
π
T
{\omega _0} = \frac{{2\pi }}{T}
ω0=T2π为角频率。
c n = 1 T ∫ 0 T f T ( t ) e − i n ω 0 t d t = 1 T ∫ − T 2 T 2 f T ( t ) e − i n ω 0 t d t ( 2 ) {c_n} = \frac{1}{T}\int_0^T {{f_T}\left( t \right){e^{ - in{\omega _0}t}}dt} = \frac{1}{T}\int_{ - \frac{T}{2}}^{\frac{T}{2}} {{f_T}\left( t \right){e^{ - in{\omega _0}t}}dt} {\rm{(2)}} cn=T1∫0TfT(t)e−inω0tdt=T1∫−2T2TfT(t)e−inω0tdt(2)
在上式中, ∑ n = − ∞ ∞ e i n ω 0 t \sum\limits_{n = - \infty }^\infty {{e^{in{\omega _0}t}}} n=−∞∑∞einω0t可以理解一种规则,而 c n c_n cn呢,我们可以理解为它定义了函数, c n = a + b i {c_n} = a + bi cn=a+bi是一个复数。
参考链接:傅里叶级数与傅里叶变换_Part5_傅里叶级数推导傅里叶变换
f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} {e^{i\omega t}}d\omega } f(t)=2π1∫−∞∞∫−∞∞f(t)e−iωtdteiωtdω
F ( ω ) ≜ ∫ − ∞ ∞ f ( t ) e − i ω t d t F\left( \omega \right) \triangleq \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} F(ω)≜∫−∞∞f(t)e−iωtdt , 这就是傅里叶变换。
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right){e^{i\omega t}}d\omega } f(t)=2π1∫−∞∞F(ω)eiωtdω, 这就是傅里叶逆变换。
这都是连续时间的傅里叶变换/逆变换,实际信号没法儿用。
我们现在存在一个离散的时间序列 x ( n ) x\left( n \right) x(n),其中呢, n = 0 , 1 , 2 , ⋯ , N − 1 n = 0,1,2, \cdots ,N - 1 n=0,1,2,⋯,N−1,采样间隔为 T T T。
下面,我们假设存在一个函数 f N T ( t ) {f_{NT}}\left( t \right) fNT(t),使得 x ( n ) = f N T ( n T ) x\left( n \right) = {f_{NT}}\left( {nT} \right) x(n)=fNT(nT),并且 f N T ( t ) {f_{NT}}\left( t \right) fNT(t)是一个周期函数,周期为 N T NT NT,即 f N T ( t ) = f N T ( t + N T ) {f_{NT}}\left( t \right) = {f_{NT}}\left( {t + NT} \right) fNT(t)=fNT(t+NT)。
下面根据Part4对于傅里叶级数的复数形式的推导结果,进行进一步的推导
f T ( t ) = ∑ n = − ∞ ∞ c n e i n ω 0 t = ∑ n = − ∞ ∞ [ ( 1 T ∫ 0 T f T ( t ) e − i n ω 0 t d t ) ⋅ e i n ω 0 t ] {f_T}\left( t \right) = \sum\limits_{n = - \infty }^\infty {{c_n}{e^{in{\omega _0}t}}} = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{T}\int_0^T {{f_T}\left( t \right){e^{ - in{\omega _0}t}}dt} } \right) \cdot {e^{in{\omega _0}t}}} \right]} fT(t)=n=−∞∑∞cneinω0t=n=−∞∑∞[(T1∫0TfT(t)e−inω0tdt)⋅einω0t]
我们将周期为 N T NT NT的函数 f N T ( t ) = f N T ( t + N T ) {f_{NT}}\left( t \right) = {f_{NT}}\left( {t + NT} \right) fNT(t)=fNT(t+NT)带入到上式当中,可得
f N T ( t ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n ω 0 t d t ) ⋅ e i n ω 0 t ] {f_{NT}}\left( t \right) = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in{\omega _0}t}}dt} } \right) \cdot {e^{in{\omega _0}t}}} \right]} fNT(t)=n=−∞∑∞[(NT1∫0NTfNT(t)e−inω0tdt)⋅einω0t]
注意到Part4中原定定义是 ω 0 = 2 π T {\omega _0} = \frac{{2\pi }}{T} ω0=T2π,由于现在我们的周期是 N T NT NT,注意: N T NT NT中的 T T T是采样间隔的意思, 2 π T \frac{{2\pi }}{T} T2π中的 T T T是周期的意思。
在所以此处 ω 0 {\omega _0} ω0应该为 ω 0 = 2 π N T {\omega _0} = \frac{{2\pi }}{{NT}} ω0=NT2π,将 ω 0 = 2 π N T {\omega _0} = \frac{{2\pi }}{{NT}} ω0=NT2π进一步带入到上式当中,可得
f N T ( t ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t ) ⋅ e i n 2 π N T t ] {f_{NT}}\left( t \right) = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} } \right) \cdot {e^{in\frac{{2\pi }}{{NT}}t}}} \right]} fNT(t)=n=−∞∑∞[(NT1∫0NTfNT(t)e−inNT2πtdt)⋅einNT2πt]
观察公式中的()部分,其实它是等于 c n = 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t {c_n} = \frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} cn=NT1∫0NTfNT(t)e−inNT2πtdt
再观察Part5连续时间傅里叶变换的结果
f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} {e^{i\omega t}}d\omega } f(t)=2π1∫−∞∞∫−∞∞f(t)e−iωtdteiωtdω
F ( ω ) ≜ ∫ − ∞ ∞ f ( t ) e − i ω t d t F\left( \omega \right) \triangleq \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} F(ω)≜∫−∞∞f(t)e−iωtdt , 傅里叶变换。
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right){e^{i\omega t}}d\omega } f(t)=2π1∫−∞∞F(ω)eiωtdω, 傅里叶逆变换。
两次积分的里面那一项, ∫ − ∞ ∞ f ( t ) e − i ω t d t \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} ∫−∞∞f(t)e−iωtdt 就是傅里叶变换 ≜ F ( ω ) \triangleq F\left( \omega \right) ≜F(ω)。
再观察 f N T ( t ) f_{NT}\left( t \right) fNT(t)的傅里叶级数表达。
f N T ( t ) = ∑ n = − ∞ ∞ [ ( 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t ) ⋅ e i n 2 π N T t ] {f_{NT}}\left( t \right) = \sum\limits_{n = - \infty }^\infty {\left[ {\left( {\frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} } \right) \cdot {e^{in\frac{{2\pi }}{{NT}}t}}} \right]} fNT(t)=n=−∞∑∞[(NT1∫0NTfNT(t)e−inNT2πtdt)⋅einNT2πt]
外层是 n n n从 − ∞ { - \infty } −∞到 + ∞ { + \infty } +∞的累积和,内层也是一个积分。如果把累加和看成是一个积分,那么也是两次积分。
我们的目的是为了推导离散傅里叶变换
那么我们是不是可以把同样把 内层的积分 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t \frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} NT1∫0NTfNT(t)e−inNT2πtdt 定义成 周期为 N T NT NT的函数的傅里叶变换 ≜ F ( ω ) \triangleq F\left( \omega \right) ≜F(ω)呢? 答案是肯定的
进一步推导,定义:
F ( ω ) ≜ 1 N T ∫ 0 N T f N T ( t ) e − i n 2 π N T t d t F\left( \omega \right) \triangleq \frac{1}{{NT}}\int_0^{NT} {{f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}}dt} F(ω)≜NT1∫0NTfNT(t)e−inNT2πtdt
我们都知道,定积分,是可以用面积法来近似的
∫ 0 N T g ( t ) d t = lim T → 0 ∑ k = 0 N − 1 g ( k T ) ⋅ T \int_0^{NT} {g\left( t \right)dt = \mathop {\lim }\limits_{T \to 0} \sum\limits_{k = 0}^{N - 1} {g\left( {kT} \right) \cdot T} } ∫0NTg(t)dt=T→0limk=0∑N−1g(kT)⋅T
我们令 g ( t ) = f N T ( t ) e − i n 2 π N T t g\left( t \right) = {f_{NT}}\left( t \right){e^{ - in\frac{{2\pi }}{{NT}}t}} g(t)=fNT(t)e−inNT2πt
那么
F
(
ω
)
=
1
N
T
∫
0
N
T
f
N
T
(
t
)
e
−
i
n
2
π
N
T
t
d
t
=
1
N
T
lim
T
→
0
∑
k
=
0
N
−
1
g
(
k
T
)
⋅
T
=
1
N
T
lim
T
→
0
∑
k
=
0
N
−
1
f
N
T
(
k
T
)
e
−
i
n
2
π
N
T
k
T
⋅
T
=
1
N
lim
T
→
0
∑
k
=
0
N
−
1
f
N
T
(
k
T
)
e
−
i
n
2
π
k
N
=
1
N
lim
T
→
0
∑
k
=
0
N
−
1
x
(
k
)
e
−
i
n
2
π
k
N
即:
F ( ω ) = 1 N lim T → 0 ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N F\left( \omega \right) = \frac{1}{N}\mathop {\lim }\limits_{T \to 0} \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} F(ω)=N1T→0limk=0∑N−1x(k)e−inN2πk
在Part5的推导中,我们知道 ω = n ω 0 \omega = n{\omega _0} ω=nω0,根据上面的推导,我们知道 ω 0 = 2 π N T {\omega _0} = \frac{{2\pi }}{{NT}} ω0=NT2π 因此, ω = n ⋅ 2 π N T \omega = n \cdot \frac{{2\pi }}{{NT}} ω=n⋅NT2π
最终得到
F ( n ⋅ 2 π N T ) = 1 N lim T → 0 ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N F\left( {n \cdot \frac{{2\pi }}{{NT}}} \right) = \frac{1}{N}\mathop {\lim }\limits_{T \to 0} \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} F(n⋅NT2π)=N1T→0limk=0∑N−1x(k)e−inN2πk
记 X ( n ) = F ( n ⋅ 2 π N T ) X\left( n \right) = F\left( {n \cdot \frac{{2\pi }}{{NT}}} \right) X(n)=F(n⋅NT2π)
就初步得到了 离散傅里叶变换的形式
X ( n ) = 1 N ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N , T → 0 X\left( n \right) = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} ,T \to 0 X(n)=N1k=0∑N−1x(k)e−inN2πk,T→0
根据傅里叶级数的定义, n n n是从 − ∞ -\infty −∞到 + ∞ +\infty +∞的整数,那么可以看出 n ⋅ 2 π N T n \cdot \frac{{2\pi }}{{NT}} n⋅NT2π也是离散的一些点。所以我们可以认为 X ( n ) X\left( n \right) X(n)就是离散傅里叶变换了。
那么对于离散的傅里叶逆变换,也能顺理成章的推导出。
注 : 使用 m T mT mT来代替前文中的 n T nT nT,是为了在后续推导中更便于理解。
f
N
T
(
t
)
=
lim
T
→
0
f
N
T
(
m
T
)
=
∑
n
=
−
∞
∞
[
(
1
N
T
∫
0
N
T
f
N
T
(
t
)
e
−
i
n
2
π
N
T
t
d
t
)
⋅
e
i
n
2
π
N
T
t
]
,
m
∈
[
−
∞
,
+
∞
]
=
∑
n
=
−
∞
∞
[
(
1
N
lim
T
→
0
∑
k
=
0
N
−
1
x
(
k
)
e
−
i
n
2
π
k
N
)
⋅
e
i
n
2
π
N
T
t
]
,
t
=
m
T
=
∑
n
=
−
∞
∞
[
(
1
N
∑
k
=
0
N
−
1
x
(
k
)
e
−
i
n
2
π
k
N
)
⋅
e
i
n
2
π
N
T
m
T
]
,
T
→
0
=
∑
n
=
−
∞
∞
[
X
(
n
)
⋅
e
i
n
2
π
m
N
]
,
T
→
0
注意:其中 t ∈ [ − ∞ , + ∞ ] ⇒ m = t T ∈ [ − ∞ , + ∞ ] t \in \left[ { - \infty , + \infty } \right] \Rightarrow m = \frac{t}{T} \in \left[ { - \infty , + \infty } \right] t∈[−∞,+∞]⇒m=Tt∈[−∞,+∞]的,而公式中的累加和 n n n的上下限为 [ − ∞ , + ∞ ] \left[ { - \infty , + \infty } \right] [−∞,+∞],但 x ( m ) x\left( m \right) x(m)的 m m m不是 [ − ∞ , + ∞ ] \left[ { - \infty , + \infty } \right] [−∞,+∞],
根据前文的定义:
x ( m ) = f N T ( m T ) , m = 0 , 1 , 2 , 3 , ⋯ , N − 1 x\left( m \right) = {f_{NT}}\left( {mT} \right),m = 0,1,2,3, \cdots ,N - 1 x(m)=fNT(mT),m=0,1,2,3,⋯,N−1
t = lim T → 0 m T ∈ { 0 , T , 2 T , 3 T , ⋯ , ( N − 1 ) T } ⇒ m = t T ∈ [ 0 , 1 , 2 , 3 , ⋯ , ( N − 1 ) ] t = \mathop {\lim }\limits_{T \to 0} mT \in \left\{ {0,T,2T,3T, \cdots ,\left( {N - 1} \right)T} \right\} \Rightarrow m = \frac{t}{T} \in \left[ {0,1,2,3, \cdots ,\left( {N - 1} \right)} \right] t=T→0limmT∈{0,T,2T,3T,⋯,(N−1)T}⇒m=Tt∈[0,1,2,3,⋯,(N−1)]
因此离散傅里叶逆变换中的上下限应该为 [ 0 , N − 1 ] \left[ {0,N - 1} \right] [0,N−1]。 即
x ( m ) = f N T ( m T ) ≜ ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = {f_{NT}}\left( {mT} \right) \triangleq \sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=fNT(mT)≜n=0∑N−1[X(n)⋅einN2πm]
口说无凭,我给出证明。证明: F − 1 { F [ x ( m ) ] } = x ( m ) {F^{ - 1}}\left\{ {F\left[ {x\left( m \right)} \right]} \right\} = x\left( m \right) F−1{F[x(m)]}=x(m)
F
−
1
{
F
[
f
N
T
(
m
T
)
]
}
=
∑
n
=
0
N
−
1
[
X
(
n
)
⋅
e
i
n
2
π
m
N
]
=
∑
n
=
0
N
−
1
(
1
N
∑
k
=
0
N
−
1
x
(
k
)
e
−
i
n
2
π
k
N
)
⋅
e
i
n
2
π
m
N
=
1
N
∑
n
=
0
N
−
1
[
x
(
0
)
e
−
i
n
2
π
⋅
0
N
+
x
(
1
)
e
−
i
n
2
π
⋅
1
N
+
x
(
2
)
e
−
i
n
2
π
⋅
2
N
+
⋯
+
x
(
a
)
e
−
i
n
2
π
⋅
a
N
+
⋯
x
(
N
−
1
)
e
−
i
n
2
π
⋅
N
−
1
N
]
⋅
e
i
n
2
π
m
N
=
1
N
×
{
(
x
(
0
)
e
−
i
n
2
π
⋅
0
N
+
x
(
1
)
e
−
i
n
2
π
⋅
1
N
+
x
(
2
)
e
−
i
n
2
π
⋅
2
N
+
⋯
+
x
(
a
)
e
−
i
n
2
π
⋅
a
N
+
⋯
x
(
N
−
1
)
e
−
i
n
2
π
⋅
N
−
1
N
)
e
i
0
2
π
m
N
+
(
x
(
0
)
e
−
i
n
2
π
⋅
0
N
+
x
(
1
)
e
−
i
n
2
π
⋅
1
N
+
x
(
2
)
e
−
i
n
2
π
⋅
2
N
+
⋯
+
x
(
a
)
e
−
i
n
2
π
⋅
a
N
+
⋯
x
(
N
−
1
)
e
−
i
n
2
π
⋅
N
−
1
N
)
e
i
1
2
π
m
N
+
(
x
(
0
)
e
−
i
n
2
π
⋅
0
N
+
x
(
1
)
e
−
i
n
2
π
⋅
1
N
+
x
(
2
)
e
−
i
n
2
π
⋅
2
N
+
⋯
+
x
(
a
)
e
−
i
n
2
π
⋅
a
N
+
⋯
x
(
N
−
1
)
e
−
i
n
2
π
⋅
N
−
1
N
)
e
i
2
2
π
m
N
+
⋯
+
(
x
(
0
)
e
−
i
n
2
π
⋅
0
N
+
x
(
1
)
e
−
i
n
2
π
⋅
1
N
+
x
(
2
)
e
−
i
n
2
π
⋅
2
N
+
⋯
+
x
(
a
)
e
−
i
n
2
π
⋅
a
N
+
⋯
x
(
N
−
1
)
e
−
i
n
2
π
⋅
N
−
1
N
)
e
i
b
2
π
m
N
+
⋯
+
(
x
(
0
)
e
−
i
n
2
π
⋅
0
N
+
x
(
1
)
e
−
i
n
2
π
⋅
1
N
+
x
(
2
)
e
−
i
n
2
π
⋅
2
N
+
⋯
+
x
(
a
)
e
−
i
n
2
π
⋅
a
N
+
⋯
x
(
N
−
1
)
e
−
i
n
2
π
⋅
N
−
1
N
)
e
i
(
N
−
1
)
2
π
m
N
}
注:1、里面的求和是 n n n不变,所以展开里面的累积和时, n n n保持不动,k待入数值。 外层的求和是 m m m不变。这时候要把 n n n带入数值。
=
1
N
×
{
(
x
(
0
)
e
−
i
0
2
π
⋅
0
N
e
i
0
2
π
m
N
+
x
(
1
)
e
−
i
0
2
π
⋅
1
N
e
i
0
2
π
m
N
+
⋯
+
x
(
a
)
e
−
i
0
2
π
⋅
a
N
e
i
0
2
π
m
N
+
⋯
x
(
N
−
1
)
e
−
i
0
2
π
⋅
N
−
1
N
e
i
0
2
π
m
N
)
+
(
x
(
0
)
e
−
i
1
2
π
⋅
0
N
e
i
1
2
π
m
N
+
x
(
1
)
e
−
i
1
2
π
⋅
1
N
e
i
1
2
π
m
N
+
⋯
+
x
(
a
)
e
−
i
1
2
π
⋅
a
N
e
i
1
2
π
m
N
+
⋯
x
(
N
−
1
)
e
−
i
1
2
π
⋅
N
−
1
N
e
i
1
2
π
m
N
)
+
⋯
+
(
x
(
0
)
e
−
i
b
2
π
⋅
0
N
e
i
b
2
π
m
N
+
x
(
1
)
e
−
i
b
2
π
⋅
1
N
e
i
b
2
π
m
N
+
⋯
+
x
(
a
)
e
−
i
b
2
π
⋅
a
N
e
i
b
2
π
m
N
+
⋯
x
(
N
−
1
)
e
−
i
b
2
π
⋅
N
−
1
N
e
i
b
2
π
m
N
)
+
⋯
+
(
x
(
0
)
e
−
i
(
N
−
1
)
2
π
⋅
0
N
e
i
(
N
−
1
)
2
π
m
N
+
x
(
1
)
e
−
i
(
N
−
1
)
2
π
⋅
1
N
e
i
(
N
−
1
)
2
π
m
N
+
⋯
+
x
(
a
)
e
−
i
(
N
−
1
)
2
π
⋅
a
N
e
i
(
N
−
1
)
2
π
m
N
+
⋯
+
x
(
N
−
1
)
e
−
i
(
N
−
1
)
2
π
⋅
N
−
1
N
e
i
(
N
−
1
)
2
π
m
N
)
}
= \frac{1}{N} \times \left\{
注2:我们把普通项拿出来,看看:
x ( a ) e − i b 2 π ⋅ a N e i b 2 π m N = x ( a ) e − i ( b 2 π ⋅ a N − b 2 π m N ) = x ( a ) e i 2 π N b ( m − a ) , a ∈ [ 0 , N − 1 ] , b ∈ [ 0 , N − 1 ] x\left( a \right){e^{ - ib\frac{{2\pi \cdot a}}{N}}}{e^{ib\frac{{2\pi m}}{N}}} = x\left( a \right){e^{ - i\left( {b\frac{{2\pi \cdot a}}{N} - b\frac{{2\pi m}}{N}} \right)}} = x\left( a \right){e^{i\frac{{2\pi }}{N}b\left( {m - a} \right)}},a \in \left[ {0,N - 1} \right],b \in \left[ {0,N - 1} \right] x(a)e−ibN2π⋅aeibN2πm=x(a)e−i(bN2π⋅a−bN2πm)=x(a)eiN2πb(m−a),a∈[0,N−1],b∈[0,N−1]
将上式重新化简:
=
1
N
×
{
x
(
0
)
∑
b
=
0
N
−
1
e
−
i
2
π
N
b
(
m
−
0
)
+
x
(
1
)
∑
b
=
0
N
−
1
e
−
i
2
π
N
b
(
m
−
1
)
+
⋯
+
x
(
a
)
∑
b
=
0
N
−
1
e
−
i
2
π
N
b
(
m
−
a
)
+
⋯
+
x
(
N
−
1
)
∑
b
=
0
N
−
1
e
−
i
2
π
N
b
(
m
−
(
N
−
1
)
)
}
=
∑
a
=
0
N
−
1
x
(
a
)
∑
b
=
0
N
−
1
e
−
i
2
π
N
b
(
m
−
a
)
注3:推导思路总结,先展到最开,然后先列相加,再行相加。
当 m = a m=a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = ∑ b = 0 N − 1 1 = N \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = \sum\limits_{b = 0}^{N - 1} 1 = N b=0∑N−1e−iN2πb(m−a)=b=0∑N−11=N
当 m ≠ a m \ne a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 0 \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = 0 b=0∑N−1e−iN2πb(m−a)=0,下面证明
证明:
{
假设存在一个公比为 q = e − i 2 π N ( m − a ) q = {e^{ - i\frac{{2\pi }}{N}\left( {m - a} \right)}} q=e−iN2π(m−a)的等比数列。
A 1 = e − i 2 π N 0 ( m − a ) {A_1} = {e^{ - i\frac{{2\pi }}{N}0\left( {m - a} \right)}} A1=e−iN2π0(m−a), A 2 = e − i 2 π N 1 ( m − a ) {A_2} = {e^{ - i\frac{{2\pi }}{N}1\left( {m - a} \right)}} A2=e−iN2π1(m−a), A n = e − i 2 π N ( N − 1 ) ( m − a ) {A_n} = {e^{ - i\frac{{2\pi }}{N}\left( {N - 1} \right)\left( {m - a} \right)}} An=e−iN2π(N−1)(m−a)
∑
b
=
0
N
−
1
e
−
i
2
π
N
b
(
m
−
a
)
=
∑
i
=
1
n
A
i
=
A
1
−
A
n
q
1
−
q
=
1
−
e
−
i
2
π
N
(
N
−
1
)
(
m
−
a
)
e
−
i
2
π
N
(
m
−
a
)
1
−
e
−
i
2
π
N
(
m
−
a
)
=
1
−
e
−
i
2
π
N
N
(
m
−
a
)
1
−
e
−
i
2
π
N
(
m
−
a
)
=
1
−
e
−
i
2
π
(
m
−
a
)
1
−
e
−
i
2
π
N
(
m
−
a
)
m − a m-a m−a 为整数, m ≠ a m \ne a m=a且 m − a ≠ 0 m-a \ne 0 m−a=0 ,可得
e − i 2 π ( m − a ) = cos ( 2 π ( m − a ) ) − sin ( 2 π ( m − a ) ) j = 1 − 0 j = 1 ⇒ ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 1 − 1 1 − e − i 2 π N ( m − a ) = 0 {e^{ - i2\pi \left( {m - a} \right)}} = \cos \left( {2\pi \left( {m - a} \right)} \right) - \sin \left( {2\pi \left( {m - a} \right)} \right)j = 1 - 0j = 1 \Rightarrow \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = \frac{{1 - 1}}{{1 - {e^{ - i\frac{{2\pi }}{N}\left( {m - a} \right)}}}} = 0 e−i2π(m−a)=cos(2π(m−a))−sin(2π(m−a))j=1−0j=1⇒b=0∑N−1e−iN2πb(m−a)=1−e−iN2π(m−a)1−1=0
证毕。
}
当 m = a m=a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = ∑ b = 0 N − 1 1 = N \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = \sum\limits_{b = 0}^{N - 1} 1 = N b=0∑N−1e−iN2πb(m−a)=b=0∑N−11=N
当 m ≠ a m \ne a m=a时, ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 0 \sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} = 0 b=0∑N−1e−iN2πb(m−a)=0。
那么外层求和就只剩 x ( m ) x\left( m \right) x(m)项了。
即:
F − 1 { F [ x ( m ) ] } = 1 N ∑ a = 0 N − 1 x ( a ) ∑ b = 0 N − 1 e − i 2 π N b ( m − a ) = 1 N x ( m ) ∑ b = 0 N − 1 1 = x ( m ) {F^{ - 1}}\left\{ {F\left[ {x\left( m \right)} \right]} \right\} = \frac{1}{N}\sum\limits_{a = 0}^{N - 1} {x\left( a \right)\sum\limits_{b = 0}^{N - 1} {{e^{ - i\frac{{2\pi }}{N}b\left( {m - a} \right)}}} } = \frac{1}{N}x\left( m \right)\sum\limits_{b = 0}^{N - 1} 1 = x\left( m \right) F−1{F[x(m)]}=N1a=0∑N−1x(a)b=0∑N−1e−iN2πb(m−a)=N1x(m)b=0∑N−11=x(m) 证毕。
把上述的推导先进行一个总结:
X ( n ) = 1 N ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N X\left( n \right) = \frac{1}{N}\sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} X(n)=N1k=0∑N−1x(k)e−inN2πk
x ( m ) = ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = \sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=n=0∑N−1[X(n)⋅einN2πm]
注意到这个系数 1 N \frac{1}{N} N1 在非周期函数的连续时间傅里叶变换当中,也有一个系数 1 2 π \frac{1}{{2\pi }} 2π1 ,它是放到了傅里叶逆变换的。
f ( t ) = 1 2 π ∫ − ∞ ∞ ∫ − ∞ ∞ f ( t ) e − i ω t d t e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {\int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} {e^{i\omega t}}d\omega } f(t)=2π1∫−∞∞∫−∞∞f(t)e−iωtdteiωtdω
F ( ω ) ≜ ∫ − ∞ ∞ f ( t ) e − i ω t d t F\left( \omega \right) \triangleq \int_{ - \infty }^\infty {f\left( t \right){e^{ - i\omega t}}dt} F(ω)≜∫−∞∞f(t)e−iωtdt , 傅里叶变换。
f ( t ) = 1 2 π ∫ − ∞ ∞ F ( ω ) e i ω t d ω f\left( t \right) = \frac{1}{{2\pi }}\int_{ - \infty }^\infty {F\left( \omega \right){e^{i\omega t}}d\omega } f(t)=2π1∫−∞∞F(ω)eiωtdω, 傅里叶逆变换。
为了和连续时间的傅里叶变换契合,离散时间的傅里叶变换也把系数 1 N \frac{1}{N} N1放到逆变换中(本质上是等价的 F − 1 { F [ x ( m ) ] } {F^{ - 1}}\left\{ {F\left[ {x\left( m \right)} \right]} \right\} F−1{F[x(m)]}还是 = x ( m ) = x\left( m \right) =x(m) )即
X ( n ) = ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N X\left( n \right) = \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} X(n)=k=0∑N−1x(k)e−inN2πk
x ( m ) = 1 N ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=N1n=0∑N−1[X(n)⋅einN2πm]
上述推导结果,除了用的符号不同,与书籍《快速傅里叶变换 算法与应用》中定义已经一模一样啦。


最终离散傅里叶变换公式如下:
X ( n ) = ∑ k = 0 N − 1 x ( k ) e − i n 2 π k N X\left( n \right) = \sum\limits_{k = 0}^{N - 1} {x\left( k \right){e^{ - in\frac{{2\pi k}}{N}}}} X(n)=k=0∑N−1x(k)e−inN2πk
x ( m ) = 1 N ∑ n = 0 N − 1 [ X ( n ) ⋅ e i n 2 π m N ] x\left( m \right) = \frac{1}{N}\sum\limits_{n = 0}^{N - 1} {\left[ {X\left( n \right) \cdot {e^{in\frac{{2\pi m}}{N}}}} \right]} x(m)=N1n=0∑N−1[X(n)⋅einN2πm]
系列学习链接:欢迎大家点赞、收藏、留言讨论。
傅里叶级数与傅里叶变换_Part0_欧拉公式证明+三角函数和差公式证明
傅里叶级数与傅里叶变换_Part2_周期为2Π的函数展开为傅里叶级数
傅里叶级数与傅里叶变换_Part3_周期为2L的函数展开为傅里叶级数