最近刚好有空给大家整理下JDK8的特性,这个在实际开发中的作用也是越来越重了,本文重点讲解下Stream API
文章目录

当我们在需要对集合中的元素进行操作的时候,除了必需的添加,删除,获取外,最典型的操作就是集合遍历,
- package com.bobo.jdk.stream;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- public class StreamTest01 {
- public static void main(String[] args) {
- // 定义一个List集合
- List<String> list = Arrays.asList("张三","张三丰","成龙","周星驰");
- // 1.获取所有 姓张的信息
- List<String> list1 = new ArrayList<>();
- for (String s : list) {
- if(s.startsWith("张")){
- list1.add(s);
- }
- }
- // 2.获取名称长度为3的用户
- List<String> list2 = new ArrayList<>();
- for (String s : list1) {
- if(s.length() == 3){
- list2.add(s);
- }
- }
- // 3. 输出所有的用户信息
- for (String s : list2) {
- System.out.println(s);
- }
- }
- }
上面的代码针对与我们不同的需求总是一次次的循环循环循环.这时我们希望有更加高效的处理方式,这时我们就可以通过JDK8中提供的Stream API来解决这个问题了。
Stream更加优雅的解决方案:
- package com.bobo.jdk.stream;
- import java.util.ArrayList;
- import java.util.Arrays;
- import java.util.List;
- public class StreamTest02 {
- public static void main(String[] args) {
- // 定义一个List集合
- List<String> list = Arrays.asList("张三","张三丰","成龙","周星驰");
- // 1.获取所有 姓张的信息
- // 2.获取名称长度为3的用户
- // 3. 输出所有的用户信息
- list.stream()
- .filter(s->s.startsWith("张"))
- .filter(s->s.length() == 3)
- .forEach(s->{
- System.out.println(s);
- });
- System.out.println("----------");
- list.stream()
- .filter(s->s.startsWith("张"))
- .filter(s->s.length() == 3)
- .forEach(System.out::println);
- }
- }
上面的SteamAPI代码的含义:获取流,过滤张,过滤长度,逐一打印。代码相比于上面的案例更加的简洁直观
2. Steam流式思想概述
注意:Stream和IO流(InputStream/OutputStream)没有任何关系,请暂时忘记对传统IO流的固有印象!
Stream流式思想类似于工厂车间的“生产流水线”,Stream流不是一种数据结构,不保存数据,而是对数据进行加工
处理。Stream可以看作是流水线上的一个工序。在流水线上,通过多个工序让一个原材料加工成一个商品。

Stream API能让我们快速完成许多复杂的操作,如筛选、切片、映射、查找、去除重复,统计,匹配和归约。
首先,java.util.Collection 接口中加入了default方法 stream,也就是说Collection接口下的所有的实现都可以通过steam方法来获取Stream流。
- public static void main(String[] args) {
- List<String> list = new ArrayList<>();
- list.stream();
- Set<String> set = new HashSet<>();
- set.stream();
- Vector vector = new Vector();
- vector.stream();
- }
但是Map接口别没有实现Collection接口,那这时怎么办呢?这时我们可以根据Map获取对应的key value的集合。
- public static void main(String[] args) {
- Map<String,Object> map = new HashMap<>();
- Stream<String> stream = map.keySet().stream(); // key
- Stream<Object> stream1 = map.values().stream(); // value
- Stream<Map.Entry<String, Object>> stream2 = map.entrySet().stream(); // entry
- }
在实际开发中我们不可避免的还是会操作到数组中的数据,由于数组对象不可能添加默认方法,所有Stream接口中提供了静态方法of
- public class StreamTest05 {
- public static void main(String[] args) {
- Stream<String> a1 = Stream.of("a1", "a2", "a3");
- String[] arr1 = {"aa","bb","cc"};
- Stream<String> arr11 = Stream.of(arr1);
- Integer[] arr2 = {1,2,3,4};
- Stream<Integer> arr21 = Stream.of(arr2);
- arr21.forEach(System.out::println);
- // 注意:基本数据类型的数组是不行的
- int[] arr3 = {1,2,3,4};
- Stream.of(arr3).forEach(System.out::println);
- }
- }
Stream常用方法
Stream流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:

终结方法:返回值类型不再是 Stream 类型的方法,不再支持链式调用。本小节中,终结方法包括 count 和 forEach 方法。
非终结方法:返回值类型仍然是 Stream 类型的方法,支持链式调用。(除了终结方法外,其余方法均为非终结方法。)
Stream注意事项(重要)
forEach用来遍历流中的数据的
void forEach(Consumer<? super T> action);
该方法接受一个Consumer接口,会将每一个流元素交给函数处理
- public static void main(String[] args) {
- Stream.of("a1", "a2", "a3").forEach(System.out::println);;
- }
Stream流中的count方法用来统计其中的元素个数的
long count();
该方法返回一个long值,代表元素的个数。
- public static void main(String[] args) {
- long count = Stream.of("a1", "a2", "a3").count();
- System.out.println(count);
- }
filter方法的作用是用来过滤数据的。返回符合条件的数据

可以通过filter方法将一个流转换成另一个子集流
Stream<T> filter(Predicate<? super T> predicate);
该接口接收一个Predicate函数式接口参数作为筛选条件
- public static void main(String[] args) {
- Stream.of("a1", "a2", "a3","bb","cc","aa","dd")
- .filter((s)->s.contains("a"))
- .forEach(System.out::println);
- }
输出:
- a1
- a2
- a3
- aa

limit方法可以对流进行截取处理,支取前n个数据,
- Stream<T> limit(long maxSize);
- 参数是一个long类型的数值,如果集合当前长度大于参数就进行截取,否则不操作:
- public static void main(String[] args) {
- Stream.of("a1", "a2", "a3","bb","cc","aa","dd")
- .limit(3)
- .forEach(System.out::println);
- }
输出:
- a1
- a2
- a3

如果希望跳过前面几个元素,可以使用skip方法获取一个截取之后的新流:
Stream<T> skip(long n);
操作:
- public static void main(String[] args) {
- Stream.of("a1", "a2", "a3","bb","cc","aa","dd")
- .skip(3)
- .forEach(System.out::println);
- }
输出:
- bb
- cc
- aa
- dd
如果我们需要将流中的元素映射到另一个流中,可以使用map方法:
<R> Stream<R> map(Function<? super T, ? extends R> mapper);

该接口需要一个Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的数据
- public static void main(String[] args) {
- Stream.of("1", "2", "3","4","5","6","7")
- //.map(msg->Integer.parseInt(msg))
- .map(Integer::parseInt)
- .forEach(System.out::println);
- }
如果需要将数据排序,可以使用sorted方法:
Stream<T> sorted();
在使用的时候可以根据自然规则排序,也可以通过比较强来指定对应的排序规则
- public static void main(String[] args) {
- Stream.of("1", "3", "2","4","0","9","7")
- //.map(msg->Integer.parseInt(msg))
- .map(Integer::parseInt)
- //.sorted() // 根据数据的自然顺序排序
- .sorted((o1,o2)->o2-o1) // 根据比较强指定排序规则
- .forEach(System.out::println);
- }
如果要去掉重复数据,可以使用distinct方法:
Stream<T> distinct();

使用:
- public static void main(String[] args) {
- Stream.of("1", "3", "3","4","0","1","7")
- //.map(msg->Integer.parseInt(msg))
- .map(Integer::parseInt)
- //.sorted() // 根据数据的自然顺序排序
- .sorted((o1,o2)->o2-o1) // 根据比较强指定排序规则
- .distinct() // 去掉重复的记录
- .forEach(System.out::println);
- System.out.println("--------");
- Stream.of(
- new Person("张三",18)
- ,new Person("李四",22)
- ,new Person("张三",18)
- ).distinct()
- .forEach(System.out::println);
- }
Stream流中的distinct方法对于基本数据类型是可以直接出重的,但是对于自定义类型,我们是需要重写hashCode和equals方法来移除重复元素。
4.9 match
如果需要判断数据是否匹配指定的条件,可以使用match相关的方法
- boolean anyMatch(Predicate<? super T> predicate); // 元素是否有任意一个满足条件
- boolean allMatch(Predicate<? super T> predicate); // 元素是否都满足条件
- boolean noneMatch(Predicate<? super T> predicate); // 元素是否都不满足条件
使用
- public static void main(String[] args) {
- boolean b = Stream.of("1", "3", "3", "4", "5", "1", "7")
- .map(Integer::parseInt)
- //.allMatch(s -> s > 0)
- //.anyMatch(s -> s >4)
- .noneMatch(s -> s > 4)
- ;
- System.out.println(b);
- }
注意match是一个终结方法
如果我们需要找到某些数据,可以使用find方法来实现
- Optional<T> findFirst();
- Optional<T> findAny();

使用:
- public static void main(String[] args) {
- Optional<String> first = Stream.of("1", "3", "3", "4", "5", "1", "7").findFirst();
- System.out.println(first.get());
- Optional<String> any = Stream.of("1", "3", "3", "4", "5", "1", "7").findAny();
- System.out.println(any.get());
- }

如果我们想要获取最大值和最小值,那么可以使用max和min方法
- Optional<T> min(Comparator<? super T> comparator);
- Optional<T> max(Comparator<? super T> comparator);
使用
- public static void main(String[] args) {
- Optional<Integer> max = Stream.of("1", "3", "3", "4", "5", "1", "7")
- .map(Integer::parseInt)
- .max((o1,o2)->o1-o2);
- System.out.println(max.get());
- Optional<Integer> min = Stream.of("1", "3", "3", "4", "5", "1", "7")
- .map(Integer::parseInt)
- .min((o1,o2)->o1-o2);
- System.out.println(min.get());
- }
4.12 reduce方法

如果需要将所有数据归纳得到一个数据,可以使用reduce方法
T reduce(T identity, BinaryOperator<T> accumulator);
使用:
- public static void main(String[] args) {
- Integer sum = Stream.of(4, 5, 3, 9)
- // identity默认值
- // 第一次的时候会将默认值赋值给x
- // 之后每次会将 上一次的操作结果赋值给x y就是每次从数据中获取的元素
- .reduce(0, (x, y) -> {
- System.out.println("x="+x+",y="+y);
- return x + y;
- });
- System.out.println(sum);
- // 获取 最大值
- Integer max = Stream.of(4, 5, 3, 9)
- .reduce(0, (x, y) -> {
- return x > y ? x : y;
- });
- System.out.println(max);
- }
在实际开发中我们经常会将map和reduce一块来使用
- public static void main(String[] args) {
- // 1.求出所有年龄的总和
- Integer sumAge = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- ).map(Person::getAge) // 实现数据类型的转换
- .reduce(0, Integer::sum);
- System.out.println(sumAge);
- // 2.求出所有年龄中的最大值
- Integer maxAge = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- ).map(Person::getAge) // 实现数据类型的转换,符合reduce对数据的要求
- .reduce(0, Math::max); // reduce实现数据的处理
- System.out.println(maxAge);
- // 3.统计 字符 a 出现的次数
- Integer count = Stream.of("a", "b", "c", "d", "a", "c", "a")
- .map(ch -> "a".equals(ch) ? 1 : 0)
- .reduce(0, Integer::sum);
- System.out.println(count);
- }
输出结果
- 87
- 22
- 3
如果需要将Stream中的Integer类型转换成int类型,可以使用mapToInt方法来实现

使用
- public static void main(String[] args) {
- // Integer占用的内存比int多很多,在Stream流操作中会自动装修和拆箱操作
- Integer arr[] = {1,2,3,5,6,8};
- Stream.of(arr)
- .filter(i->i>0)
- .forEach(System.out::println);
- System.out.println("---------");
- // 为了提高程序代码的效率,我们可以先将流中Integer数据转换为int数据,然后再操作
- IntStream intStream = Stream.of(arr)
- .mapToInt(Integer::intValue);
- intStream.filter(i->i>3)
- .forEach(System.out::println);
- }
如果有两个流,希望合并成为一个流,那么可以使用Stream接口的静态方法concat
- public static <T> Stream<T> concat(Stream<? extends T> a, Stream<? extends T> b) {
- Objects.requireNonNull(a);
- Objects.requireNonNull(b);
- @SuppressWarnings("unchecked")
- Spliterator<T> split = new Streams.ConcatSpliterator.OfRef<>(
- (Spliterator<T>) a.spliterator(), (Spliterator<T>) b.spliterator());
- Stream<T> stream = StreamSupport.stream(split, a.isParallel() || b.isParallel());
- return stream.onClose(Streams.composedClose(a, b));
- }
使用:
- public static void main(String[] args) {
- Stream<String> stream1 = Stream.of("a","b","c");
- Stream<String> stream2 = Stream.of("x", "y", "z");
- // 通过concat方法将两个流合并为一个新的流
- Stream.concat(stream1,stream2).forEach(System.out::println);
- }
定义两个集合,然后在集合中存储多个用户名称。然后完成如下的操作:
- package com.bobo.jdk.stream;
- import com.bobo.jdk.lambda.domain.Person;
- import java.util.Arrays;
- import java.util.List;
- import java.util.stream.Stream;
- public class StreamTest21Demo {
- /**
- * 1. 第一个队伍只保留姓名长度为3的成员
- * 2. 第一个队伍筛选之后只要前3个人
- * 3. 第二个队伍只要姓张的成员
- * 4. 第二个队伍筛选之后不要前两个人
- * 5. 将两个队伍合并为一个队伍
- * 6. 根据姓名创建Person对象
- * 7. 打印整个队伍的Person信息
- * @param args
- */
- public static void main(String[] args) {
- List<String> list1 = Arrays.asList("迪丽热巴", "宋远桥", "苏星河", "老子", "庄子", "孙子", "洪七 公");
- List<String> list2 = Arrays.asList("古力娜扎", "张无忌", "张三丰", "赵丽颖", "张二狗", "张天爱", "张三");
- // 1. 第一个队伍只保留姓名长度为3的成员
- // 2. 第一个队伍筛选之后只要前3个人
- Stream<String> stream1 = list1.stream().filter(s -> s.length() == 3).limit(3);
- // 3. 第二个队伍只要姓张的成员
- // 4. 第二个队伍筛选之后不要前两个人
- Stream<String> stream2 = list2.stream().filter(s -> s.startsWith("张")).skip(2);
- // 5. 将两个队伍合并为一个队伍
- // 6. 根据姓名创建Person对象
- // 7. 打印整个队伍的Person信息
- Stream.concat(stream1,stream2)
- //.map(n-> new Person(n))
- .map(Person::new)
- .forEach(System.out::println);
- }
- }
- 输出结果:
- Person{name='宋远桥', age=null, height=null}
- Person{name='苏星河', age=null, height=null}
- Person{name='张二狗', age=null, height=null}
- Person{name='张天爱', age=null, height=null}
- Person{name='张三', age=null, height=null}
- /**
- * Stream结果收集
- * 收集到集合中
- */
- @Test
- public void test01(){
- // Stream<String> stream = Stream.of("aa", "bb", "cc");
- List<String> list = Stream.of("aa", "bb", "cc","aa")
- .collect(Collectors.toList());
- System.out.println(list);
- // 收集到 Set集合中
- Set<String> set = Stream.of("aa", "bb", "cc", "aa")
- .collect(Collectors.toSet());
- System.out.println(set);
- // 如果需要获取的类型为具体的实现,比如:ArrayList HashSet
- ArrayList<String> arrayList = Stream.of("aa", "bb", "cc", "aa")
- //.collect(Collectors.toCollection(() -> new ArrayList<>()));
- .collect(Collectors.toCollection(ArrayList::new));
- System.out.println(arrayList);
- HashSet<String> hashSet = Stream.of("aa", "bb", "cc", "aa")
- .collect(Collectors.toCollection(HashSet::new));
- System.out.println(hashSet);
- }
输出:
- [aa, bb, cc, aa]
- [aa, bb, cc]
- [aa, bb, cc, aa]
- [aa, bb, cc]
Stream中提供了toArray方法来将结果放到一个数组中,返回值类型是Object[],如果我们要指定返回的类型,那么可以使用另一个重载的toArray(IntFunction f)方法
- /**
- * Stream结果收集到数组中
- */
- @Test
- public void test02(){
- Object[] objects = Stream.of("aa", "bb", "cc", "aa")
- .toArray(); // 返回的数组中的元素是 Object类型
- System.out.println(Arrays.toString(objects));
- // 如果我们需要指定返回的数组中的元素类型
- String[] strings = Stream.of("aa", "bb", "cc", "aa")
- .toArray(String[]::new);
- System.out.println(Arrays.toString(strings));
- }
当我们使用Stream流处理数据后,可以像数据库的聚合函数一样对某个字段进行操作,比如获得最大值,最小值,求和,平均值,统计数量。
- /**
- * Stream流中数据的聚合计算
- */
- @Test
- public void test03(){
- // 获取年龄的最大值
- Optional<Person> maxAge = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- ).collect(Collectors.maxBy((p1, p2) -> p1.getAge() - p2.getAge()));
- System.out.println("最大年龄:" + maxAge.get());
- // 获取年龄的最小值
- Optional<Person> minAge = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- ).collect(Collectors.minBy((p1, p2) -> p1.getAge() - p2.getAge()));
- System.out.println("最新年龄:" + minAge.get());
- // 求所有人的年龄之和
- Integer sumAge = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- )
- //.collect(Collectors.summingInt(s -> s.getAge()))
- .collect(Collectors.summingInt(Person::getAge))
- ;
- System.out.println("年龄总和:" + sumAge);
- // 年龄的平均值
- Double avgAge = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- ).collect(Collectors.averagingInt(Person::getAge));
- System.out.println("年龄的平均值:" + avgAge);
- // 统计数量
- Long count = Stream.of(
- new Person("张三", 18)
- , new Person("李四", 22)
- , new Person("张三", 13)
- , new Person("王五", 15)
- , new Person("张三", 19)
- ).filter(p->p.getAge() > 18)
- .collect(Collectors.counting());
- System.out.println("满足条件的记录数:" + count);
- }
当我们使用Stream流处理数据后,可以根据某个属性将数据分组
- /**
- * 分组计算
- */
- @Test
- public void test04(){
- // 根据账号对数据进行分组
- Map<String, List<Person>> map1 = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).collect(Collectors.groupingBy(Person::getName));
- map1.forEach((k,v)-> System.out.println("k=" + k +"\t"+ "v=" + v));
- System.out.println("-----------");
- // 根据年龄分组 如果大于等于18 成年否则未成年
- Map<String, List<Person>> map2 = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).collect(Collectors.groupingBy(p -> p.getAge() >= 18 ? "成年" : "未成年"));
- map2.forEach((k,v)-> System.out.println("k=" + k +"\t"+ "v=" + v));
- }
输出结果:
- k=李四 v=[Person{name='李四', age=22, height=177}, Person{name='李四', age=15, height=166}]
- k=张三 v=[Person{name='张三', age=18, height=175}, Person{name='张三', age=14, height=165}, Person{name='张三', age=19, height=182}]
- -----------
- k=未成年 v=[Person{name='张三', age=14, height=165}, Person{name='李四', age=15, height=166}]
- k=成年 v=[Person{name='张三', age=18, height=175}, Person{name='李四', age=22, height=177}, Person{name='张三', age=19, height=182}]
多级分组: 先根据name分组然后根据年龄分组
- /**
- * 分组计算--多级分组
- */
- @Test
- public void test05(){
- // 先根据name分组,然后根据age(成年和未成年)分组
- Map<String,Map<Object,List<Person>>> map = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).collect(Collectors.groupingBy(
- Person::getName
- ,Collectors.groupingBy(p->p.getAge()>=18?"成年":"未成年"
- )
- ));
- map.forEach((k,v)->{
- System.out.println(k);
- v.forEach((k1,v1)->{
- System.out.println("\t"+k1 + "=" + v1);
- });
- });
- }
输出结果:
- 李四
- 未成年=[Person{name='李四', age=15, height=166}]
- 成年=[Person{name='李四', age=22, height=177}]
- 张三
- 未成年=[Person{name='张三', age=14, height=165}]
- 成年=[Person{name='张三', age=18, height=175}, Person{name='张三', age=19, height=182}]
Collectors.partitioningBy会根据值是否为true,把集合中的数据分割为两个列表,一个true列表,一个false列表

- /**
- * 分区操作
- */
- @Test
- public void test06(){
- Map<Boolean, List<Person>> map = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).collect(Collectors.partitioningBy(p -> p.getAge() > 18));
- map.forEach((k,v)-> System.out.println(k+"\t" + v));
- }
输出结果:
- false [Person{name='张三', age=18, height=175}, Person{name='张三', age=14, height=165}, Person{name='李四', age=15, height=166}]
- true [Person{name='李四', age=22, height=177}, Person{name='张三', age=19, height=182}]
Collectors.joining会根据指定的连接符,将所有的元素连接成一个字符串
- /**
- * 对流中的数据做拼接操作
- */
- @Test
- public void test07(){
- String s1 = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).map(Person::getName)
- .collect(Collectors.joining());
- // 张三李四张三李四张三
- System.out.println(s1);
- String s2 = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).map(Person::getName)
- .collect(Collectors.joining("_"));
- // 张三_李四_张三_李四_张三
- System.out.println(s2);
- String s3 = Stream.of(
- new Person("张三", 18, 175)
- , new Person("李四", 22, 177)
- , new Person("张三", 14, 165)
- , new Person("李四", 15, 166)
- , new Person("张三", 19, 182)
- ).map(Person::getName)
- .collect(Collectors.joining("_", "###", "$$$"));
- // ###张三_李四_张三_李四_张三$$$
- System.out.println(s3);
- }
我们前面使用的Stream流都是串行,也就是在一个线程上面执行。
- /**
- * 串行流
- */
- @Test
- public void test01(){
- Stream.of(5,6,8,3,1,6)
- .filter(s->{
- System.out.println(Thread.currentThread() + "" + s);
- return s > 3;
- }).count();
- }
输出:
- Thread[main,5,main]5
- Thread[main,5,main]6
- Thread[main,5,main]8
- Thread[main,5,main]3
- Thread[main,5,main]1
- Thread[main,5,main]6
parallelStream其实就是一个并行执行的流,它通过默认的ForkJoinPool,可以提高多线程任务的速度。
我们可以通过两种方式来获取并行流。
实现:
- /**
- * 获取并行流的两种方式
- */
- @Test
- public void test02(){
- List<Integer> list = new ArrayList<>();
- // 通过List 接口 直接获取并行流
- Stream<Integer> integerStream = list.parallelStream();
- // 将已有的串行流转换为并行流
- Stream<Integer> parallel = Stream.of(1, 2, 3).parallel();
- }
- /**
- * 并行流操作
- */
- @Test
- public void test03(){
- Stream.of(1,4,2,6,1,5,9)
- .parallel() // 将流转换为并发流,Stream处理的时候就会通过多线程处理
- .filter(s->{
- System.out.println(Thread.currentThread() + " s=" +s);
- return s > 2;
- }).count();
- }
效果
- Thread[main,5,main] s=1
- Thread[ForkJoinPool.commonPool-worker-2,5,main] s=9
- Thread[ForkJoinPool.commonPool-worker-6,5,main] s=6
- Thread[ForkJoinPool.commonPool-worker-13,5,main] s=2
- Thread[ForkJoinPool.commonPool-worker-9,5,main] s=4
- Thread[ForkJoinPool.commonPool-worker-4,5,main] s=5
- Thread[ForkJoinPool.commonPool-worker-11,5,main] s=1
我们通过for循环,串行Stream流,并行Stream流来对500000000亿个数字求和。来看消耗时间
- package com.bobo.jdk.res;
- import org.junit.After;
- import org.junit.Before;
- import org.junit.Test;
- import java.util.stream.LongStream;
- public class Test03 {
- private static long times = 500000000;
- private long start;
- @Before
- public void befor(){
- start = System.currentTimeMillis();
- }
- @After
- public void end(){
- long end = System.currentTimeMillis();
- System.out.println("消耗时间:" + (end - start));
- }
- /**
- * 普通for循环 消耗时间:138
- */
- @Test
- public void test01(){
- System.out.println("普通for循环:");
- long res = 0;
- for (int i = 0; i < times; i++) {
- res += i;
- }
- }
- /**
- * 串行流处理
- * 消耗时间:203
- */
- @Test
- public void test02(){
- System.out.println("串行流:serialStream");
- LongStream.rangeClosed(0,times)
- .reduce(0,Long::sum);
- }
- /**
- * 并行流处理 消耗时间:84
- */
- @Test
- public void test03(){
- LongStream.rangeClosed(0,times)
- .parallel()
- .reduce(0,Long::sum);
- }
- }
通过案例我们可以看到parallelStream的效率是最高的。
Stream并行处理的过程会分而治之,也就是将一个大的任务切分成了多个小任务,这表示每个任务都是一个线程操作。
在多线程的处理下,肯定会出现数据安全问题。如下:
- @Test
- public void test01(){
- List<Integer> list = new ArrayList<>();
- for (int i = 0; i < 1000; i++) {
- list.add(i);
- }
- System.out.println(list.size());
- List<Integer> listNew = new ArrayList<>();
- // 使用并行流来向集合中添加数据
- list.parallelStream()
- //.forEach(s->listNew.add(s));
- .forEach(listNew::add);
- System.out.println(listNew.size());
- }
运行效果:
839
或者直接抛异常
- java.lang.ArrayIndexOutOfBoundsException
- at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
- at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
- at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
- at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
- at java.util.concurrent.ForkJoinTask.getThrowableException(ForkJoinTask.java:598)
- ....
- Caused by: java.lang.ArrayIndexOutOfBoundsException: 366
- at java.util.ArrayList.add(ArrayList.java:463)
针对这个问题,我们的解决方案有哪些呢?
实现:
- /**
- * 加同步锁
- */
- @Test
- public void test02(){
- List<Integer> listNew = new ArrayList<>();
- Object obj = new Object();
- IntStream.rangeClosed(1,1000)
- .parallel()
- .forEach(i->{
- synchronized (obj){
- listNew.add(i);
- }
- });
- System.out.println(listNew.size());
- }
- /**
- * 使用线程安全的容器
- */
- @Test
- public void test03(){
- Vector v = new Vector();
- Object obj = new Object();
- IntStream.rangeClosed(1,1000)
- .parallel()
- .forEach(i->{
- synchronized (obj){
- v.add(i);
- }
- });
- System.out.println(v.size());
- }
- /**
- * 将线程不安全的容器转换为线程安全的容器
- */
- @Test
- public void test04(){
- List<Integer> listNew = new ArrayList<>();
- // 将线程不安全的容器包装为线程安全的容器
- List<Integer> synchronizedList = Collections.synchronizedList(listNew);
- Object obj = new Object();
- IntStream.rangeClosed(1,1000)
- .parallel()
- .forEach(i->{
- synchronizedList.add(i);
- });
- System.out.println(synchronizedList.size());
- }
- /**
- * 我们还可以通过Stream中的 toArray方法或者 collect方法来操作
- * 就是满足线程安全的要求
- */
- @Test
- public void test05(){
- List<Integer> listNew = new ArrayList<>();
- Object obj = new Object();
- List<Integer> list = IntStream.rangeClosed(1, 1000)
- .parallel()
- .boxed()
- .collect(Collectors.toList());
- System.out.println(list.size());
- }
parallelStream使用的是Fork/Join框架。Fork/Join框架自JDK 7引入。Fork/Join框架可以将一个大任务拆分为很多小任务来异步执行。 Fork/Join框架主要包含三个模块:

ForkJoinPool主要用来使用分治法(Divide-and-Conquer Algorithm)来解决问题。典型的应用比如快速排序算法,ForkJoinPool需要使用相对少的线程来处理大量的任务。比如要对1000万个数据进行排序,那么会将这个任务分割成两个500万的排序任务和一个针对这两组500万数据的合并任务。以此类推,对于500万的数据也会做出同样的分割处理,到最后会设置一个阈值来规定当数据规模到多少时,停止这样的分割处理。比如,当元素的数量小于10时,会停止分割,转而使用插入排序对它们进行排序。那么到最后,所有的任务加起来会有大概2000000+个。问题的关键在于,对于一个任务而言,只有当它所有的子任务完成之后,它才能够被执行。

Fork/Join最核心的地方就是利用了现代硬件设备多核,在一个操作时候会有空闲的cpu,那么如何利用好这个空闲的cpu就成了提高性能的关键,而这里我们要提到的工作窃取(work-stealing)算法就是整个Fork/Join框架的核心理念Fork/Join工作窃取(work-stealing)算法是指某个线程从其他队列里窃取任务来执行。

那么为什么需要使用工作窃取算法呢?假如我们需要做一个比较大的任务,我们可以把这个任务分割为若干互不依赖的子任务,为了减少线程间的竞争,于是把这些子任务分别放到不同的队列里,并为每个队列创建一个单独的线程来执行队列里的任务,线程和队列一一对应,比如A线程负责处理A队列里的任务。但是有的线程会先把自己队列里的任务干完,而其他线程对应的队列里还有任务等待处理。干完活的线程与其等着,不如去帮其他线程干活,于是它就去其他线程的队列里窃取一个任务来执行。而在这时它们会访问同一个队列,所以为了减少窃取任务线程和被窃取任务线程之间的竞争,通常会使用双端队列,被窃取任务线程永远从双端队列的头部拿任务执行,而窃取任务的线程永远从双端队列的尾部拿任务执行。
工作窃取算法的优点是充分利用线程进行并行计算,并减少了线程间的竞争,其缺点是在某些情况下还是存在竞争,
比如双端队列里只有一个任务时。并且消耗了更多的系统资源,比如创建多个线程和多个双端队列。上文中已经提到了在Java 8引入了自动并行化的概念。它能够让一部分Java代码自动地以并行的方式执行,也就是我们使用了ForkJoinPool的ParallelStream。
对于ForkJoinPool通用线程池的线程数量,通常使用默认值就可以了,即运行时计算机的处理器数量。可以通过设置系统属性:
java.util.concurrent.ForkJoinPool.common.parallelism=N (N为线程数量),来调整ForkJoinPool的线程数量,可以尝试调整成不同的参数来观察每次的输出结果。
需求:使用Fork/Join计算1-10000的和,当一个任务的计算数量大于3000的时候拆分任务。数量小于3000的时候就计算

案例的实现
- package com.bobo.jdk.res;
- import java.util.concurrent.ForkJoinPool;
- import java.util.concurrent.RecursiveTask;
- public class Test05 {
- /**
- * 使用Fork/Join计算1-10000的和,
- * 当一个任务的计算数量大于3000的时候拆分任务。
- * 数量小于3000的时候就计算
- * @param args
- */
- public static void main(String[] args) {
- long start = System.currentTimeMillis();
- ForkJoinPool pool = new ForkJoinPool();
- SumRecursiveTask task = new SumRecursiveTask(1,10000l);
- Long result = pool.invoke(task);
- System.out.println("result="+result);
- long end = System.currentTimeMillis();
- System.out.println("总的耗时:" + (end-start));
- }
- }
- class SumRecursiveTask extends RecursiveTask<Long>{
- // 定义一个拆分的临界值
- private static final long THRESHOLD = 3000l;
- private final long start;
- private final long end;
- public SumRecursiveTask(long start, long end) {
- this.start = start;
- this.end = end;
- }
- @Override
- protected Long compute() {
- long length = end -start;
- if(length <= THRESHOLD){
- // 任务不用拆分,可以计算
- long sum = 0;
- for(long i=start ; i <= end ;i++){
- sum += i;
- }
- System.out.println("计算:"+ start+"-->" + end +",的结果为:" + sum);
- return sum;
- }else{
- // 数量大于预定的数量,那说明任务还需要继续拆分
- long middle = (start+end)/2;
- System.out.println("拆分:左边 " + start+"-->" + middle+", 右边" + (middle+1) + "-->" + end);
- SumRecursiveTask left = new SumRecursiveTask(start, middle);
- left.fork();
- SumRecursiveTask right = new SumRecursiveTask(middle + 1, end);
- right.fork();
- return left.join()+right.join();
- }
- }
- }
输出结果:
- 拆分:左边 1-->5000, 右边5001-->10000
- 拆分:左边 5001-->7500, 右边7501-->10000
- 拆分:左边 1-->2500, 右边2501-->5000
- 计算:1-->2500,的结果为:3126250
- 计算:5001-->7500,的结果为:15626250
- 计算:2501-->5000,的结果为:9376250
- 计算:7501-->10000,的结果为:21876250
- result=50005000
- 总的耗时:19
~好了,Stream流的内容就介绍到这儿,如果对你有帮助,欢迎点赞关注加收藏哦 V_V