给定一棵二叉树的根节点 root,和另外两个节点 a 和 b,返回 a 和 b 的最低公共祖先。
最低公共祖先:两个节点往上走,到哪个节点汇聚,该节点就是最低公共祖先。对于一个节点是根,另一个节点是其子树上的节点的情况,该根节点就是最低公共祖先。
方法一:遍历二叉树,利用哈希表记录每个节点的父节点,将节点 a 沿途的到根节点的所有节点都放入一个集合中,然后找到从 b 开始沿途一直到根节点有什么节点在集合中,则它就是最低公共祖先。
方法二:二叉树递归套路。
总结来说,向左树和右树需要搜集的信息:(1)在树上是否发现了 a;(2)在树上是否发现了 b;(3)a 和 b 汇聚的最低公共祖先。
收集左树和右树的信息,然后更新当前节点的信息,这就是一个后序遍历,时间复杂度 O ( n ) O(n) O(n)。
/*************************************************************************
> File Name: 040.返回二叉树两个节点的最低公共祖先.cpp
> Author: Maureen
> Mail: Maureen@qq.com
> Created Time: 一 7/ 4 13:42:23 2022
************************************************************************/
#include <iostream>
#include <ctime>
#include <unordered_map>
#include <set>
#include <vector>
using namespace std;
class TreeNode {
public:
int value;
TreeNode *left;
TreeNode *right;
TreeNode(int data) : value(data) {}
};
//方法一:建表保存父节点信息
void fillParentMap(TreeNode *root, unordered_map<TreeNode*, TreeNode*> &parentMap) {
if (root->left != nullptr) {
parentMap[root->left] = root;
fillParentMap(root->left, parentMap);
}
if (root->right != nullptr) {
parentMap[root->right] = root;
fillParentMap(root->right, parentMap);
}
}
TreeNode *lowestAncestor1(TreeNode *root, TreeNode *o1, TreeNode *o2) {
if (root == nullptr) return nullptr;
unordered_map<TreeNode*, TreeNode*> parentMap;
parentMap[root] = nullptr;
fillParentMap(root, parentMap);//保存每个节点的父节点
set<TreeNode*> o1set;
TreeNode *cur = o1;
//o1节点沿途到根节点的所有节点放入o1set中
while (cur != nullptr) {
o1set.insert(cur);
cur = parentMap[cur];
}
cur = o2;
while (!o1set.count(cur)) {
cur = parentMap[cur];
}
return cur;
}
//方法二:二叉树递归套路
class Info {
public:
bool existA;
bool existB;
TreeNode *ancestor;
Info(bool a, bool b, TreeNode *node) : existA(a), existB(b), ancestor(node) {}
};
Info *process(TreeNode *x, TreeNode *a, TreeNode *b) {
if (x == nullptr) {
return new Info(false, false, nullptr);
}
Info *leftInfo = process(x->left, a, b);
Info *rightInfo = process(x->right, a, b);
bool existA = (x == a) || leftInfo->existA || rightInfo->existA;
bool existB = (x == b) || leftInfo->existB || rightInfo->existB;
TreeNode *ancestor = nullptr;
if (leftInfo->ancestor != nullptr) {
ancestor = leftInfo->ancestor;
} else if(rightInfo->ancestor != nullptr) {
ancestor = rightInfo->ancestor;
} else {
if (existA && existB) ancestor = x;
}
return new Info(existA, existB, ancestor);
}
TreeNode *lowestAncestor2(TreeNode *root, TreeNode *a, TreeNode *b) {
return process(root, a, b)->ancestor;
}
//for test
//for test
TreeNode *generate(int level, int maxl, int maxv) {
if (level > maxl || (rand() % 100 / (double)101) < 0.5)
return nullptr;
TreeNode *root = new TreeNode(rand() % maxv);
root->left = generate(level + 1, maxl, maxv);
root->right = generate(level + 1, maxl, maxv);
return root;
}
TreeNode *generateRandomBST(int level, int value) {
return generate(1, level, value);
}
void fillPrelist(TreeNode *root, vector<TreeNode*> &arr) {
if (root == nullptr) return ;
arr.push_back(root);
fillPrelist(root->left, arr);
fillPrelist(root->right, arr);
}
TreeNode *pickRandomOne(TreeNode *root) {
if (root == nullptr) return nullptr;
vector<TreeNode*> arr;
fillPrelist(root, arr);
int randInd = rand() % arr.size();
return arr[randInd];
}
int main() {
srand(time(0));
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000001;
cout << "Test begin:" << endl;
for (int i = 0; i < testTimes; i++) {
TreeNode *root = generateRandomBST(maxLevel, maxValue);
TreeNode *a = pickRandomOne(root);
TreeNode *b = pickRandomOne(root);
if (lowestAncestor1(root, a, b) != lowestAncestor2(root, a, b)) {
cout << "Failed!" << endl;
return 0;
}
if (i && i % 1000 == 0) cout << i << " cases passed!" << endl;
}
cout << "Success!!" << endl;
return 0;
}
import java.util.ArrayList;
import java.util.HashMap;
import java.util.HashSet;
public class LowestAncestor{
public static class Node {
public int value;
public Node left;
public Node right;
public Node(int data) {
this.value = data;
}
}
//方法一:建表,保存父节点信息
public static Node lowestAncestor1(Node head, Node o1, Node o2) {
if (head == null) {
return null;
}
// key的父节点是value
HashMap<Node, Node> parentMap = new HashMap<>();
parentMap.put(head, null);
fillParentMap(head, parentMap);
HashSet<Node> o1Set = new HashSet<>();
Node cur = o1;
o1Set.add(cur);
while (parentMap.get(cur) != null) {
cur = parentMap.get(cur);
o1Set.add(cur);
}
cur = o2;
while (!o1Set.contains(cur)) {
cur = parentMap.get(cur);
}
return cur;
}
public static void fillParentMap(Node head, HashMap<Node, Node> parentMap) {
if (head.left != null) {
parentMap.put(head.left, head);
fillParentMap(head.left, parentMap);
}
if (head.right != null) {
parentMap.put(head.right, head);
fillParentMap(head.right, parentMap);
}
}
//方法二:二叉树递归套路
public static Node lowestAncestor2(Node head, Node a, Node b) {
return process(head, a, b).ans;
}
public static class Info {
public boolean findA; //是否找到a
public boolean findB; //是否找到b
public Node ans; //是否找到汇聚点
public Info(boolean fa, boolean fb, Node an) {
findA = fa;
findB = fb;
ans = an;
}
}
public static Info process(Node x, Node a, Node b) {
if (x == null) { //设置空树
return new Info(false, false, null);
}
Info leftInfo = process(x.left, a, b);
Info rightInfo = process(x.right, a, b);
//发现a和b
boolean findA = (x == a) || leftInfo.findA || rightInfo.findA;
boolean findB = (x == b) || leftInfo.findB || rightInfo.findB;
Node ans = null;
if (leftInfo.ans != null) { //左树上找到最初汇聚点
ans = leftInfo.ans;
} else if (rightInfo.ans != null) { //右树上找到最初汇聚点
ans = rightInfo.ans;
} else { //左树和右树都没有找到汇聚点
if (findA && findB) { //如果发现了a和b,那么汇聚点一定就是x
ans = x;
}
}
return new Info(findA, findB, ans);
}
// for test
public static Node generateRandomBST(int maxLevel, int maxValue) {
return generate(1, maxLevel, maxValue);
}
// for test
public static Node generate(int level, int maxLevel, int maxValue) {
if (level > maxLevel || Math.random() < 0.5) {
return null;
}
Node head = new Node((int) (Math.random() * maxValue));
head.left = generate(level + 1, maxLevel, maxValue);
head.right = generate(level + 1, maxLevel, maxValue);
return head;
}
// for test
public static Node pickRandomOne(Node head) {
if (head == null) {
return null;
}
ArrayList<Node> arr = new ArrayList<>();
fillPrelist(head, arr);
int randomIndex = (int) (Math.random() * arr.size());
return arr.get(randomIndex);
}
// for test
public static void fillPrelist(Node head, ArrayList<Node> arr) {
if (head == null) {
return;
}
arr.add(head);
fillPrelist(head.left, arr);
fillPrelist(head.right, arr);
}
public static void main(String[] args) {
int maxLevel = 4;
int maxValue = 100;
int testTimes = 1000000;
for (int i = 0; i < testTimes; i++) {
Node head = generateRandomBST(maxLevel, maxValue);
Node o1 = pickRandomOne(head);
Node o2 = pickRandomOne(head);
if (lowestAncestor1(head, o1, o2) != lowestAncestor2(head, o1, o2)) {
System.out.println("Oops!");
}
}
System.out.println("finish!");
}
}