• torch F.unfold()举例


    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    if __name__ == '__main__':
        x = torch.randn(1, 3, 5, 5)
        print(x)
        output = F.unfold(x, [3, 3], padding=1)
        print(output, output.size())

    tensor([[[[ 0.6355, -1.7449, -0.1417,  2.7639, -0.7094],
              [ 0.6342, -2.7050, -0.6332,  1.1187, -0.7882],
              [ 0.9027,  0.0864,  0.0781, -0.9886,  1.2459],
              [-0.7042,  1.0129,  0.0044,  0.3249,  0.7367],
              [ 1.0695,  0.3068,  0.0306,  0.3125, -1.7379]],

             [[-0.4521, -0.3601,  1.5153, -0.1056, -1.7330],
              [-0.2078, -0.2476,  0.5120,  0.3215, -0.5475],
              [-0.7312, -0.3561,  0.2800, -0.3449, -0.6668],
              [-0.0132, -1.3868, -0.6101, -0.1316,  1.2194],
              [-0.0468,  0.3087,  0.0622,  0.4266, -0.7321]],

             [[ 0.0784,  0.4645, -1.9329,  0.6818,  1.3477],
              [ 0.4170,  0.1470,  1.5329, -0.8186, -0.3433],
              [-1.6386,  1.1872, -0.9104, -0.9699,  1.2272],
              [ 0.9990, -0.4472,  0.6127, -0.9709,  1.5095],
              [-0.0757, -0.5395,  1.6615, -0.9380,  0.9002]]]])
    tensor([[[ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.6355,
              -1.7449, -0.1417,  2.7639,  0.0000,  0.6342, -2.7050, -0.6332,
               1.1187,  0.0000,  0.9027,  0.0864,  0.0781, -0.9886,  0.0000,
              -0.7042,  1.0129,  0.0044,  0.3249],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.6355, -1.7449,
              -0.1417,  2.7639, -0.7094,  0.6342, -2.7050, -0.6332,  1.1187,
              -0.7882,  0.9027,  0.0864,  0.0781, -0.9886,  1.2459, -0.7042,
               1.0129,  0.0044,  0.3249,  0.7367],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000, -1.7449, -0.1417,
               2.7639, -0.7094,  0.0000, -2.7050, -0.6332,  1.1187, -0.7882,
               0.0000,  0.0864,  0.0781, -0.9886,  1.2459,  0.0000,  1.0129,
               0.0044,  0.3249,  0.7367,  0.0000],
             [ 0.0000,  0.6355, -1.7449, -0.1417,  2.7639,  0.0000,  0.6342,
              -2.7050, -0.6332,  1.1187,  0.0000,  0.9027,  0.0864,  0.0781,
              -0.9886,  0.0000, -0.7042,  1.0129,  0.0044,  0.3249,  0.0000,
               1.0695,  0.3068,  0.0306,  0.3125],
             [ 0.6355, -1.7449, -0.1417,  2.7639, -0.7094,  0.6342, -2.7050,
              -0.6332,  1.1187, -0.7882,  0.9027,  0.0864,  0.0781, -0.9886,
               1.2459, -0.7042,  1.0129,  0.0044,  0.3249,  0.7367,  1.0695,
               0.3068,  0.0306,  0.3125, -1.7379],
             [-1.7449, -0.1417,  2.7639, -0.7094,  0.0000, -2.7050, -0.6332,
               1.1187, -0.7882,  0.0000,  0.0864,  0.0781, -0.9886,  1.2459,
               0.0000,  1.0129,  0.0044,  0.3249,  0.7367,  0.0000,  0.3068,
               0.0306,  0.3125, -1.7379,  0.0000],
             [ 0.0000,  0.6342, -2.7050, -0.6332,  1.1187,  0.0000,  0.9027,
               0.0864,  0.0781, -0.9886,  0.0000, -0.7042,  1.0129,  0.0044,
               0.3249,  0.0000,  1.0695,  0.3068,  0.0306,  0.3125,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [ 0.6342, -2.7050, -0.6332,  1.1187, -0.7882,  0.9027,  0.0864,
               0.0781, -0.9886,  1.2459, -0.7042,  1.0129,  0.0044,  0.3249,
               0.7367,  1.0695,  0.3068,  0.0306,  0.3125, -1.7379,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [-2.7050, -0.6332,  1.1187, -0.7882,  0.0000,  0.0864,  0.0781,
              -0.9886,  1.2459,  0.0000,  1.0129,  0.0044,  0.3249,  0.7367,
               0.0000,  0.3068,  0.0306,  0.3125, -1.7379,  0.0000,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000, -0.4521,
              -0.3601,  1.5153, -0.1056,  0.0000, -0.2078, -0.2476,  0.5120,
               0.3215,  0.0000, -0.7312, -0.3561,  0.2800, -0.3449,  0.0000,
              -0.0132, -1.3868, -0.6101, -0.1316],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000, -0.4521, -0.3601,
               1.5153, -0.1056, -1.7330, -0.2078, -0.2476,  0.5120,  0.3215,
              -0.5475, -0.7312, -0.3561,  0.2800, -0.3449, -0.6668, -0.0132,
              -1.3868, -0.6101, -0.1316,  1.2194],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000, -0.3601,  1.5153,
              -0.1056, -1.7330,  0.0000, -0.2476,  0.5120,  0.3215, -0.5475,
               0.0000, -0.3561,  0.2800, -0.3449, -0.6668,  0.0000, -1.3868,
              -0.6101, -0.1316,  1.2194,  0.0000],
             [ 0.0000, -0.4521, -0.3601,  1.5153, -0.1056,  0.0000, -0.2078,
              -0.2476,  0.5120,  0.3215,  0.0000, -0.7312, -0.3561,  0.2800,
              -0.3449,  0.0000, -0.0132, -1.3868, -0.6101, -0.1316,  0.0000,
              -0.0468,  0.3087,  0.0622,  0.4266],
             [-0.4521, -0.3601,  1.5153, -0.1056, -1.7330, -0.2078, -0.2476,
               0.5120,  0.3215, -0.5475, -0.7312, -0.3561,  0.2800, -0.3449,
              -0.6668, -0.0132, -1.3868, -0.6101, -0.1316,  1.2194, -0.0468,
               0.3087,  0.0622,  0.4266, -0.7321],
             [-0.3601,  1.5153, -0.1056, -1.7330,  0.0000, -0.2476,  0.5120,
               0.3215, -0.5475,  0.0000, -0.3561,  0.2800, -0.3449, -0.6668,
               0.0000, -1.3868, -0.6101, -0.1316,  1.2194,  0.0000,  0.3087,
               0.0622,  0.4266, -0.7321,  0.0000],
             [ 0.0000, -0.2078, -0.2476,  0.5120,  0.3215,  0.0000, -0.7312,
              -0.3561,  0.2800, -0.3449,  0.0000, -0.0132, -1.3868, -0.6101,
              -0.1316,  0.0000, -0.0468,  0.3087,  0.0622,  0.4266,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [-0.2078, -0.2476,  0.5120,  0.3215, -0.5475, -0.7312, -0.3561,
               0.2800, -0.3449, -0.6668, -0.0132, -1.3868, -0.6101, -0.1316,
               1.2194, -0.0468,  0.3087,  0.0622,  0.4266, -0.7321,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [-0.2476,  0.5120,  0.3215, -0.5475,  0.0000, -0.3561,  0.2800,
              -0.3449, -0.6668,  0.0000, -1.3868, -0.6101, -0.1316,  1.2194,
               0.0000,  0.3087,  0.0622,  0.4266, -0.7321,  0.0000,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0784,
               0.4645, -1.9329,  0.6818,  0.0000,  0.4170,  0.1470,  1.5329,
              -0.8186,  0.0000, -1.6386,  1.1872, -0.9104, -0.9699,  0.0000,
               0.9990, -0.4472,  0.6127, -0.9709],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.0784,  0.4645,
              -1.9329,  0.6818,  1.3477,  0.4170,  0.1470,  1.5329, -0.8186,
              -0.3433, -1.6386,  1.1872, -0.9104, -0.9699,  1.2272,  0.9990,
              -0.4472,  0.6127, -0.9709,  1.5095],
             [ 0.0000,  0.0000,  0.0000,  0.0000,  0.0000,  0.4645, -1.9329,
               0.6818,  1.3477,  0.0000,  0.1470,  1.5329, -0.8186, -0.3433,
               0.0000,  1.1872, -0.9104, -0.9699,  1.2272,  0.0000, -0.4472,
               0.6127, -0.9709,  1.5095,  0.0000],
             [ 0.0000,  0.0784,  0.4645, -1.9329,  0.6818,  0.0000,  0.4170,
               0.1470,  1.5329, -0.8186,  0.0000, -1.6386,  1.1872, -0.9104,
              -0.9699,  0.0000,  0.9990, -0.4472,  0.6127, -0.9709,  0.0000,
              -0.0757, -0.5395,  1.6615, -0.9380],
             [ 0.0784,  0.4645, -1.9329,  0.6818,  1.3477,  0.4170,  0.1470,
               1.5329, -0.8186, -0.3433, -1.6386,  1.1872, -0.9104, -0.9699,
               1.2272,  0.9990, -0.4472,  0.6127, -0.9709,  1.5095, -0.0757,
              -0.5395,  1.6615, -0.9380,  0.9002],
             [ 0.4645, -1.9329,  0.6818,  1.3477,  0.0000,  0.1470,  1.5329,
              -0.8186, -0.3433,  0.0000,  1.1872, -0.9104, -0.9699,  1.2272,
               0.0000, -0.4472,  0.6127, -0.9709,  1.5095,  0.0000, -0.5395,
               1.6615, -0.9380,  0.9002,  0.0000],
             [ 0.0000,  0.4170,  0.1470,  1.5329, -0.8186,  0.0000, -1.6386,
               1.1872, -0.9104, -0.9699,  0.0000,  0.9990, -0.4472,  0.6127,
              -0.9709,  0.0000, -0.0757, -0.5395,  1.6615, -0.9380,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [ 0.4170,  0.1470,  1.5329, -0.8186, -0.3433, -1.6386,  1.1872,
              -0.9104, -0.9699,  1.2272,  0.9990, -0.4472,  0.6127, -0.9709,
               1.5095, -0.0757, -0.5395,  1.6615, -0.9380,  0.9002,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000],
             [ 0.1470,  1.5329, -0.8186, -0.3433,  0.0000,  1.1872, -0.9104,
              -0.9699,  1.2272,  0.0000, -0.4472,  0.6127, -0.9709,  1.5095,
               0.0000, -0.5395,  1.6615, -0.9380,  0.9002,  0.0000,  0.0000,
               0.0000,  0.0000,  0.0000,  0.0000]]]) torch.Size([1, 27, 25])
     

  • 相关阅读:
    容器编排工具鉴赏- docker-compose 、Kubernetes、OpenShift、Docker Swarm
    自动化RPA大纲
    WordPress主题网站首页添加好看的四格小工具教程
    JCL 学习
    C#A类调用B类的方法,在方法中更新B类的控件
    【计算机网络微课堂】5.8 TCP的运输连接管理
    glibc: mprotect: 使用
    树多选搜索查询,搜索后选中状态仍保留
    在IntelliJ IDEA 中安装阿里P3C以及使用指南
    Verilog学习之Notgate
  • 原文地址:https://blog.csdn.net/stt12345678/article/details/125406468