matlab2013b,quartusii121.
带通滤波器在数字幅频均衡功率放大器中一个重要的组成部分,在介绍带通滤波器之前,我们首先来详细介绍一下数字幅频均衡功率放大器。
本系统要求的指标为:
本题要求在输入电压有效值为5mV的条件下,放大倍数达到400倍。而且20Hz到20kHz衰减不能超过1dB。-1 dB转化为信号幅值变化为11%,可以说指标要求很高。我们可以选择使用PGA或AD620实现这一指标。
整个系统的基本结构如下所示:

图1 系统总提结构框图
根据以上分析,系统的整体框图如图1所示。输入信号首先通过前置放大电路放大到一定幅度,经过带阻网络后,信号的幅频特性发生变化。由于AD输入幅度限制,信号先经过衰减网络衰减两倍,再经过抗混叠滤波并使用AD对输入信号进行采样,将采样结果送入FPGA做幅频均衡。最后通过DA输出并滤波,经过D类功放后即可得到大功率信号。
·前置放大电路的设计
输入信号电压放大倍数不小于400倍,单级运放的放大倍数难以做到这么高,所以采用两级运放的形式来做前级放大。由于系统频率为20Hz~20kHz,所以选用OP27运放完成电路。
·抗混叠滤波器电路设计
根据采样定理,为了使采样信号不发生频域混叠,必须在A/D采样电路的前端加入抗混叠滤波器电路,滤波器截止频率为采样频率的一半。由于本系统主要处理20kHz以内的信号,所以选用开关电容滤波器LTC1068—25设计一个八阶椭圆滤波器,其截至频率为25kHz。
·A/D采样电路的设计
根据题目的指标及系统频率的要求,我们需要一款采样率超过40KHz的采样芯片。AD9223是一款12bits、最高采样频率10MHz的性能优良的AD采样器件,由于以前使用过该芯片,为了更快的完成题目,所以选用AD9223作为采样芯片。
·数字幅频均衡模块设计
数字幅频均衡模块的原理图如图4-3所示,如果要实现对带阻网络的完全补偿,那么FIR滤波器应与带阻网络互为逆系统.带阻网络的系统函数可以通过点频法测得,然后使用MATLAB求出加窗后FIR滤波器应该具有的单位脉冲响应。因为FIR系统具有线性相位特性,所以由其幅频响应就可以求得其系统函数。

图2 数字幅频均衡模块的原理图
·D/A输出电路设计
根据题目的指标及系统频率的要求,我们需要一款频率超过40KHz的模数输出芯片。DAC904是一款14bits、最高采样频率165MHz的的DA器件,由于以前使用过该芯片,所以仍选用DAC904作为数模输出芯片。
·功率放大电路设计
D类功放第一部分为调制器,输入信号接比较器的正输入端,与三角波相比较。当正端上的电位高于负端三角波电位时,比较器输出为高电平,反之则输出低电平。这样,比较器输出的波形就是一个脉冲宽度被音频信号幅度调制后的波形,称为SPWM波。D类功放后级输出电路是一个脉冲控制的大电流开关放大器,正半周期比较器输出高电平,MOSFET晶体管Q1导通,且Q2截止,负半周期比较器输出高电平Q2导通,且Q1截止,这样它就把比较器输出的PWM信号变成高电压、大电流的大功率PWM信号,最后只需要通过一个二阶低通滤波器就可以把声音信息还原出来。


- library ieee;
- use ieee.std_logic_1164.all;
- use ieee.numeric_std.all;
- use std.textio.all;
- entity tb_firs is
- --START MEGAWIZARD INSERT CONSTANTS
- constant FIR_INPUT_FILE_c : string := "firs_input.txt";
- constant FIR_OUTPUT_FILE_c : string := "firs_output.txt";
- constant NUM_OF_CHANNELS_c : natural := 1;
- constant DATA_WIDTH_c : natural := 16;
- constant CHANNEL_OUT_WIDTH_c : natural := 0;
- constant OUT_WIDTH_c : natural := 35;
- constant COEF_SET_ADDRESS_WIDTH_c : natural := 0;
- constant COEF_RELOAD_BIT_WIDTH_c : natural := 35;
-
- --END MEGAWIZARD INSERT CONSTANTS
- end entity tb_firs;
-
-
- --library work;
- --library auk_dspip_lib;
-
- -------------------------------------------------------------------------------
-
- architecture rtl of tb_firs is
-
- signal ast_sink_data : std_logic_vector (DATA_WIDTH_c-1 downto 0) := (others => '0');
- signal ast_source_data : std_logic_vector (OUT_WIDTH_c-1 downto 0);
- signal ast_sink_error : std_logic_vector (1 downto 0) := (others => '0');
- signal ast_source_error : std_logic_vector (1 downto 0);
- signal ast_sink_valid : std_logic := '0';
- signal ast_source_valid : std_logic;
- signal ast_source_ready : std_logic := '0';
- signal clk : std_logic := '0';
- signal reset_testbench : std_logic := '0';
- signal reset_design : std_logic;
- signal eof : std_logic;
- signal ast_sink_ready : std_logic;
- signal start : std_logic;
- signal cnt : natural range 0 to NUM_OF_CHANNELS_c;
- constant tclk : time := 10 ns;
- constant time_lapse_max : time := 60 us;
- signal time_lapse : time;
- function div_ceil(a : natural; b : natural) return natural is
- variable res : natural := a/b;
- begin
- if res*b /= a then
- res := res +1;
- end if;
- return res;
- end div_ceil;
-
- function to_hex (value : in signed) return string is
- constant ne : integer := (value'length+3)/4;
- constant NUS : string(2 to 1) := (others => ' ');
- variable pad : std_logic_vector(0 to (ne*4 - value'length) - 1);
- variable ivalue : std_logic_vector(0 to ne*4 - 1);
- variable result : string(1 to ne);
- variable quad : std_logic_vector(0 to 3);
- begin
- if value'length < 1 then
- return NUS;
- else
- if value (value'left) = 'Z' then
- pad := (others => 'Z');
- else
- pad := (others => value(value'high));
- end if;
- ivalue := pad & std_logic_vector (value);
- for i in 0 to ne-1 loop
- quad := To_X01Z(ivalue(4*i to 4*i+3));
- case quad is
- when x"0" => result(i+1) := '0';
- when x"1" => result(i+1) := '1';
- when x"2" => result(i+1) := '2';
- when x"3" => result(i+1) := '3';
- when x"4" => result(i+1) := '4';
- when x"5" => result(i+1) := '5';
- when x"6" => result(i+1) := '6';
- when x"7" => result(i+1) := '7';
- when x"8" => result(i+1) := '8';
- when x"9" => result(i+1) := '9';
- when x"A" => result(i+1) := 'A';
- when x"B" => result(i+1) := 'B';
- when x"C" => result(i+1) := 'C';
- when x"D" => result(i+1) := 'D';
- when x"E" => result(i+1) := 'E';
- when x"F" => result(i+1) := 'F';
- when "ZZZZ" => result(i+1) := 'Z';
- when others => result(i+1) := 'X';
- end case;
- end loop;
- return result;
- end if;
- end function to_hex;
- begin
-
- DUT : entity work.firs
- port map (
- clk => clk,
- reset_n => reset_design,
- ast_sink_ready => ast_sink_ready,
- ast_sink_data => ast_sink_data,
- ast_source_data => ast_source_data,
- ast_sink_valid => ast_sink_valid,
- ast_source_valid => ast_source_valid,
- ast_source_ready => ast_source_ready,
- ast_sink_error => ast_sink_error,
- ast_source_error => ast_source_error);
- -- for example purposes, the ready signal is always asserted.
- ast_source_ready <= '1';
-
- -- no input error
- ast_sink_error <= (others => '0');
-
- -- start valid for first cycle to indicate that the file reading should start.
- start_p : process (clk, reset_testbench)
- begin
- if reset_testbench = '0' then
- start <= '1';
- elsif rising_edge(clk) then
- if ast_sink_valid = '1' and ast_sink_ready = '1' then
- start <= '0';
- end if;
- end if;
- end process start_p;
- -----------------------------------------------------------------------------------------------
- -- Read input data from file
- -----------------------------------------------------------------------------------------------
- source_model : process(clk) is
- file in_file : text open read_mode is FIR_INPUT_FILE_c;
- variable data_in : integer;
- variable indata : line;
- begin
- if rising_edge(clk) then
- if(reset_testbench = '0') then
- ast_sink_data <= std_logic_vector(to_signed(0, DATA_WIDTH_c)) after tclk/4;
- ast_sink_valid <= '0' after tclk/4;
- eof <= '0';
- else
- if not endfile(in_file) and (eof = '0') then
- eof <= '0';
- if((ast_sink_valid = '1' and ast_sink_ready = '1') or
- (start = '1'and not (ast_sink_valid = '1' and ast_sink_ready = '0'))) then
- readline(in_file, indata);
- read(indata, data_in);
- ast_sink_valid <= '1' after tclk/4;
- ast_sink_data <= std_logic_vector(to_signed(data_in, DATA_WIDTH_c)) after tclk/4;
- else
- ast_sink_valid <= '1' after tclk/4;
- ast_sink_data <= ast_sink_data after tclk/4;
- end if;
- else
- eof <= '1';
- ast_sink_valid <= '0' after tclk/4;
- ast_sink_data <= std_logic_vector(to_signed(0, DATA_WIDTH_c)) after tclk/4;
- end if;
- end if;
- end if;
- end process source_model;
- ---------------------------------------------------------------------------------------------
- -- Write FIR output to file
- ---------------------------------------------------------------------------------------------
-
- sink_model : process(clk) is
- file ro_file : text open write_mode is FIR_OUTPUT_FILE_c;
- variable rdata : line;
- variable data_r : string(div_ceil(OUT_WIDTH_c,4) downto 1);
- begin
- if rising_edge(clk) then
- if(ast_source_valid = '1' and ast_source_ready = '1') then
- -- report as hex representation of integer.
- data_r := to_hex(signed(ast_source_data));
- write(rdata, data_r);
- writeline(ro_file, rdata);
- end if;
- end if;
- end process sink_model;
- -------------------------------------------------------------------------------
- -- clock generator
- -------------------------------------------------------------------------------
- clkgen : process
- begin -- process clkgen
- if eof = '1' then
- clk <= '0';
- assert FALSE
- report "NOTE: Stimuli ended" severity note;
- wait;
- elsif time_lapse >= time_lapse_max then
- clk <= '0';
- assert FALSE
- report "ERROR: Reached time_lapse_max without activity, probably simulation is stuck!" severity Error;
- wait;
- else
- clk <= '0';
- wait for tclk/2;
- clk <= '1';
- wait for tclk/2;
- end if;
- end process clkgen;
-
- monitor_toggling_activity : process(clk, reset_testbench,
- ast_source_data, ast_source_valid)
- begin
- if reset_testbench = '0' then
- time_lapse <= 0 ns;
- elsif ast_source_data'event or ast_source_valid'event then
- time_lapse <= 0 ns;
- elsif rising_edge(clk) then
- if time_lapse < time_lapse_max then
- time_lapse <= time_lapse + tclk;
- end if;
- end if;
- end process monitor_toggling_activity;
-
-
- -------------------------------------------------------------------------------
- -- reset generator
- -------------------------------------------------------------------------------
- reset_testbench_gen : process
- begin -- process resetgen
- reset_testbench <= '1';
- wait for tclk/4;
- reset_testbench <= '0';
- wait for tclk*2;
- reset_testbench <= '1';
- wait;
- end process reset_testbench_gen;
- reset_design_gen : process
- begin -- process resetgen
- reset_design <= '1';
- wait for tclk/4;
- reset_design <= '0';
- wait for tclk*2;
- reset_design <= '1';
- wait for tclk*80;
- reset_design <= '1';
- wait for tclk*128*2;
- reset_design <= '1';
- wait;
- end process reset_design_gen;
-
- -------------------------------------------------------------------------------
- -- control signals
- -------------------------------------------------------------------------------
-
- end architecture rtl;
我们在MATLAB中对该IIR滤波器进行验证。代码如下所示:
b=[1 -1.8986 08991];
a=[2 -3.192 1.193];
[h1,f1]=freqz(b,a,100,1000000);
plot(f1,20*log10(abs(h1)));
其仿真波形如下所示:

图3 IIR滤波器的特性曲线
从上图可以看到,其通带是从0开始的,虽然在整个通带范围20~20k中20hz误差很小,但是IIR由于本身的缺陷,并不能满足要求。
·基于FIR的方案验证
其代码如下所示:
fs=200000;
wn1=[0.02 0.2];
b = fir1(1024,wn1,'DC-0');
freqz(b,1,1024,fs);axis([0,30000,-100,30]);grid;
title('设计的FIR带通滤波器');
其仿真结果如下所示:

图4 带通FIR滤波器仿真图
这里由于20hz的起始带通频率非常低,为了能使仿真效果能够明显点,这里通带频率为2K~20K。在实际使用的时候:

图5 带通FIR滤波器仿真图
由此可见,采用FIR滤波器可以达到设计要求。


其仿真结果如下所示:

[01]Mark Zwolinski.VHDL数字系统设计[M].电子工业出版社.2004
[02]褚振勇,翁木云.FPGA设计及应用.西安电子科技大学出版社[M].2002
[03]李玉山,来新泉.电子系统集成设计技术[M].电子工业出版社.2002.A25-15