• Python画图3个小案例之“一起看流星雨”、“爱心跳动”、“烟花绚丽”


    在这里插入图片描述
    源码如下:

    import turtle  # 导入turtle库,用于图形绘制
    import random  # 导入random库,生成随机数
    import math  # 导入math库,进行数学计算
    
    turtle.setup(1.0, 1.0)  # 设置窗口大小为屏幕大小
    turtle.title("流星雨动画")   # 设置窗口标题
    turtle.bgcolor('black')  # 设置背景颜色为黑色
    
    t = turtle.Turtle()  # 创建一个画笔对象
    t.hideturtle()  # 隐藏画笔,不显示画布的形状
    t.pensize(1)    # 设置画笔的大小
    
    # 定义流星的颜色列表
    colors = ['gold', 'yellow', 'orange', 'green']  # 金色
    
    
    class Meteor:  # 定义流星类
        def __init__(self):  # 初始化方法,创建每颗流星时调用
            self.r = random.randint(50, 100)    # 随机生成流星的半径
            self.k = random.uniform(2, 4)   # 随机生成角度参数
            self.x = random.randint(-1000, 1000)  # 随机生成流星的x坐标
            self.y = random.randint(-500, 500)  # 随机生成流星的y坐标
            self.speed = random.randint(5, 10)  # 随机生成流星的移动速度
            self.color = random.choice(colors)  # 随机选择流星的颜色
    
        def meteor(self):  # 绘制流星的方法
            # 移动画笔到指定的坐标位置处
            t.penup()
            t.goto(self.x, self.y)
            t.pendown()
            # 设置流星的颜色
            t.begin_fill()
            t.fillcolor(self.color)
            # 开始绘制流星
            t.setheading(-30)  # 设置流星的朝向
            t.right(self.k)  # 根据随机角度右转
            t.forward(self.r)  # 沿直线前进一定长度
            t.left(self.k)  # 左转回到垂直方向
            t.circle(self.r * math.sin(math.radians(self.k)), 180)  # 绘制半圆弧
            t.left(self.k)  # 再次左转恢复角度
            t.forward(self.r)  # 沿直线前进相同长度以闭合流星形状
            t.end_fill()  # 结束填充
    
        def move(self):  # 更新流星位置的方法
            if self.y >= -500:  # 当流星的y坐标大于等于-500时
                self.y -= self.speed  # 减小流星y坐标的大小,将画笔向下移动
                self.x += 2 * self.speed  # 增加流星x坐标的大小,将画笔向右移动
            else:  # 当流星的y坐标小于-500时
                self.r = random.randint(50, 100)  # 重新设置流星的半径
                self.k = random.uniform(2, 4)  # 重新设置角度参数
                self.x = random.randint(-2000, 1000)  # 重新设置流星的x坐标
                self.y = 500  # 重新设置流星的y坐标
                self.speed = random.randint(5, 10)  # 重新设置流星的速度
                self.color = random.choice(colors)  # 重新设置流星的颜色
    
    
    # 创建一个流星列表,用来存储流星实例
    Meteors = []
    for i in range(100):
        Meteors.append(Meteor())
    
    # 进行无限循环,模拟流星雨动画
    while True:
        turtle.tracer(0)  # 关闭tracer,提高性能
        t.clear()  # 清除画布内容
        for i in range(100):
            Meteors[i].move()  # 更新每颗流星的位置
            Meteors[i].meteor()  # 重新绘制每颗流星
        turtle.update()  # 更新屏幕显示内容
    

    在这里插入图片描述
    源码如下:

    import random
    from math import sin, cos, pi, log
    from tkinter import *
    
    CANVAS_WIDTH = 640
    CANVAS_HEIGHT = 480
    CANVAS_CENTER_X = CANVAS_WIDTH / 2
    CANVAS_CENTER_Y = CANVAS_HEIGHT / 2
    IMAGE_ENLARGE = 11
    HEART_COLOR = "#FFC0CB"  # ff2121
    
    
    def heart_function(t, shrink_ratio: float = IMAGE_ENLARGE):
        x = 16 * (sin(t) ** 3)
        y = -(13 * cos(t) - 5 * cos(2 * t) - 2 * cos(3 * t) - cos(4 * t))
    
        x *= shrink_ratio
        y *= shrink_ratio
    
        x += CANVAS_CENTER_X
        y += CANVAS_CENTER_Y
    
        return int(x), int(y)
    
    
    def scatter_inside(x, y, beta=0.15):
        ratio_x = - beta * log(random.random())
        ratio_y = - beta * log(random.random())
    
        dx = ratio_x * (x - CANVAS_CENTER_X)
        dy = ratio_y * (y - CANVAS_CENTER_Y)
    
        return x - dx, y - dy
    
    
    def shrink(x, y, ratio):
        force = -1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.6)  # 这个参数...
        dx = ratio * force * (x - CANVAS_CENTER_X)
        dy = ratio * force * (y - CANVAS_CENTER_Y)
        return x - dx, y - dy
    
    
    def curve(p):
        return 2 * (2 * sin(4 * p)) / (2 * pi)
    
    
    class Heart:
    
        def __init__(self, generate_frame=20):
            self._points = set()  # 原始爱心坐标集合
            self._edge_diffusion_points = set()  # 边缘扩散效果点坐标集合
            self._center_diffusion_points = set()  # 中心扩散效果点坐标集合
            self.all_points = {}  # 每帧动态点坐标
            self.build(2000)
    
            self.random_halo = 1000
    
            self.generate_frame = generate_frame
            for frame in range(generate_frame):
                self.calc(frame)
    
        def build(self, number):
    
            for _ in range(number):
                t = random.uniform(0, 2 * pi)
                x, y = heart_function(t)
                self._points.add((x, y))
    
            for _x, _y in list(self._points):
                for _ in range(3):
                    x, y = scatter_inside(_x, _y, 0.05)
                    self._edge_diffusion_points.add((x, y))
    
            point_list = list(self._points)
            for _ in range(4000):
                x, y = random.choice(point_list)
                x, y = scatter_inside(x, y, 0.17)
                self._center_diffusion_points.add((x, y))
    
        @staticmethod
        def calc_position(x, y, ratio):
    
            force = 1 / (((x - CANVAS_CENTER_X) ** 2 + (y - CANVAS_CENTER_Y) ** 2) ** 0.520)  # 魔法参数
    
            dx = ratio * force * (x - CANVAS_CENTER_X) + random.randint(-1, 1)
            dy = ratio * force * (y - CANVAS_CENTER_Y) + random.randint(-1, 1)
    
            return x - dx, y - dy
    
        def calc(self, generate_frame):
            ratio = 10 * curve(generate_frame / 10 * pi)  # 圆滑的周期的缩放比例
    
            halo_radius = int(4 + 6 * (1 + curve(generate_frame / 10 * pi)))
            halo_number = int(3000 + 4000 * abs(curve(generate_frame / 10 * pi) ** 2))
    
            all_points = []
    
            heart_halo_point = set()
            for _ in range(halo_number):
                t = random.uniform(0, 2 * pi)
                x, y = heart_function(t, shrink_ratio=11.6)
                x, y = shrink(x, y, halo_radius)
                if (x, y) not in heart_halo_point:
                    heart_halo_point.add((x, y))
                    x += random.randint(-14, 14)
                    y += random.randint(-14, 14)
                    size = random.choice((1, 2, 2))
                    all_points.append((x, y, size))
    
            for x, y in self._points:
                x, y = self.calc_position(x, y, ratio)
                size = random.randint(1, 3)
                all_points.append((x, y, size))
    
            for x, y in self._edge_diffusion_points:
                x, y = self.calc_position(x, y, ratio)
                size = random.randint(1, 2)
                all_points.append((x, y, size))
    
            for x, y in self._center_diffusion_points:
                x, y = self.calc_position(x, y, ratio)
                size = random.randint(1, 2)
                all_points.append((x, y, size))
    
            self.all_points[generate_frame] = all_points
    
        def render(self, render_canvas, render_frame):
            for x, y, size in self.all_points[render_frame % self.generate_frame]:
                render_canvas.create_rectangle(x, y, x + size, y + size, width=0, fill=HEART_COLOR)
    
    
    def draw(main: Tk, render_canvas: Canvas, render_heart: Heart, render_frame=0):
        render_canvas.delete('all')
        render_heart.render(render_canvas, render_frame)
        main.after(160, draw, main, render_canvas, render_heart, render_frame + 1)
    
    
    if __name__ == '__main__':
        root = Tk()  # 一个Tk
        canvas = Canvas(root, bg='black', height=CANVAS_HEIGHT, width=CANVAS_WIDTH)
        canvas.pack()
        heart = Heart()
        draw(root, canvas, heart)
        root.mainloop()
    

    在这里插入图片描述
    啊这个烟花有待优化啊,哈哈,丑版烟花5毛钱特效。

    import turtle  # 导入turtle库,用于图形绘制
    import random  # 导入random库,生成随机数
    import math  # 导入math库,进行数学计算
    
    # 设置窗口大小和背景颜色
    turtle.setup(1.0, 1.0)
    turtle.title("烟花绽放动画")
    turtle.bgcolor('black')
    
    t = turtle.Turtle()
    t.hideturtle()
    t.pensize(1)
    
    # 定义烟花的颜色列表
    colors = ['red', 'blue', 'green', 'yellow', 'purple', 'orange']
    
    
    class Firework:
        def __init__(self):
            self.x = random.randint(-400, 400)
            self.y = random.randint(-300, 300)
            self.color = random.choice(colors)
            self.particles = []
            self.exploded = False
            self.lifetime = random.randint(50, 100)
            self.create_particles()
    
        def create_particles(self):
            for _ in range(random.randint(50, 100)):
                angle = random.uniform(0, 2 * math.pi)
                speed = random.uniform(1, 6)
                dx = math.cos(angle) * speed
                dy = math.sin(angle) * speed
                self.particles.append([self.x, self.y, dx, dy])
    
        def update(self):
            if not self.exploded:
                self.lifetime -= 1
                if self.lifetime <= 0:
                    self.explode()
            else:
                for particle in self.particles:
                    particle[0] += particle[2]
                    particle[1] += particle[3]
                    particle[3] -= 0.1  # gravity effect
    
        def explode(self):
            self.exploded = True
    
        def draw(self):
            if not self.exploded:
                t.penup()
                t.goto(self.x, self.y)
                t.dot(10, self.color)  # 放大烟花点的大小
            else:
                for particle in self.particles:
                    t.penup()
                    t.goto(particle[0], particle[1])
                    t.dot(5, self.color)  # 放大光粒的半径
    
    
    # 创建一个烟花列表,用来存储烟花实例
    fireworks = [Firework() for _ in range(5)]
    
    # 进行无限循环,模拟烟花绽放动画
    while True:
        turtle.tracer(0)  # 关闭tracer,提高性能
        t.clear()  # 清除画布内容
        for firework in fireworks:
            firework.update()  # 更新每颗烟花的状态
            firework.draw()  # 重新绘制每颗烟花
        turtle.update()  # 更新屏幕显示内容
    
        # 创建新的烟花实例以保持持续绽放效果
        if random.random() < 0.1:  # 控制新烟花出现的频率
            fireworks.append(Firework())
    
        # 移除已经爆炸并消失的烟花实例,防止内存泄漏
        fireworks = [fw for fw in fireworks if not (fw.exploded and all(p[3] <= -1 for p in fw.particles))]
    
    

    喜欢的可以关注一下我哦,后续更精彩。

  • 相关阅读:
    Vue--解决Scss报错:Syntax Error: TypeError: this.getOptions is not a function
    技术研发类岗位招聘的人才测评方案
    LLM基础模型系列:Prompt-Tuning
    【每日一题】CF1690E. Price Maximization | 双指针 | 简单
    Leetcode 155. 最小栈
    9.SpringBoot与调度器
    Unity类银河恶魔城学习记录13-1 p142 Save system源代码
    java虚拟机详解
    虹科分享 | 终端安全防护 | 网络安全术语列表(上篇)
    XML解析
  • 原文地址:https://blog.csdn.net/2301_79810514/article/details/143336805