• LLM学习笔记-4


    从Hugging Face加载预训练权重

    1. 因为每次训练都要有资源消耗 (GPU算力,还有时间成本),所以说及时保存模型是非常重要的。
    2. 教大家如何去下载Hugging Face的模型进行生成文本
      在这里插入图片描述
    pip install transformers
    pip install tiktoken
    
    • 1
    • 2
    from importlib.metadata import version
    
    pkgs = ["numpy", "torch", "transformers"]
    for p in pkgs:
        print(f"{p} version: {version(p)}")
    
    • 1
    • 2
    • 3
    • 4
    • 5

    numpy version: 1.26.4
    torch version: 2.1.2
    transformers version: 4.39.3

    from transformers import GPT2Model
    
    
    # allowed model names
    model_names = {
        "gpt2-small": "openai-community/gpt2",         # 124M
        "gpt2-medium": "openai-community/gpt2-medium", # 355M
        "gpt2-large": "openai-community/gpt2-large",   # 774M
        "gpt2-xl": "openai-community/gpt2-xl"          # 1558M
    }
    
    CHOOSE_MODEL = "gpt2-small"
    
    gpt_hf = GPT2Model.from_pretrained(model_names[CHOOSE_MODEL], cache_dir="checkpoints")
    gpt_hf.eval()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15

    GPT2Model(
    (wte): Embedding(50257, 768)
    (wpe): Embedding(1024, 768)
    (drop): Dropout(p=0.1, inplace=False)
    (h): ModuleList(
    (0-11): 12 x GPT2Block(
    (ln_1): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (attn): GPT2Attention(
    (c_attn): Conv1D()
    (c_proj): Conv1D()
    (attn_dropout): Dropout(p=0.1, inplace=False)
    (resid_dropout): Dropout(p=0.1, inplace=False)
    )
    (ln_2): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    (mlp): GPT2MLP(
    (c_fc): Conv1D()
    (c_proj): Conv1D()
    (act): NewGELUActivation()
    (dropout): Dropout(p=0.1, inplace=False)
    )
    )
    )
    (ln_f): LayerNorm((768,), eps=1e-05, elementwise_affine=True)
    )

    BASE_CONFIG = {
        "vocab_size": 50257,  # Vocabulary size
        "ctx_len": 1024,      # Context length
        "drop_rate": 0.0,     # Dropout rate
        "qkv_bias": True      # Query-key-value bias
    }
    
    model_configs = {
        "gpt2-small": {"emb_dim": 768, "n_layers": 12, "n_heads": 12},
        "gpt2-medium": {"emb_dim": 1024, "n_layers": 24, "n_heads": 16},
        "gpt2-large": {"emb_dim": 1280, "n_layers": 36, "n_heads": 20},
        "gpt2-xl": {"emb_dim": 1600, "n_layers": 48, "n_heads": 25},
    }
    
    
    BASE_CONFIG.update(model_configs[CHOOSE_MODEL])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    def assign_check(left, right):
        if left.shape != right.shape:
            raise ValueError(f"Shape mismatch. Left: {left.shape}, Right: {right.shape}")
        return torch.nn.Parameter(torch.tensor(right))
    
    • 1
    • 2
    • 3
    • 4
    import numpy as np
    
    
    def load_weights(gpt, gpt_hf):
    
        d = gpt_hf.state_dict()
    
        gpt.pos_emb.weight = assign_check(gpt.pos_emb.weight, d["wpe.weight"])
        gpt.tok_emb.weight = assign_check(gpt.tok_emb.weight, d["wte.weight"])
        
        for b in range(BASE_CONFIG["n_layers"]):
            q_w, k_w, v_w = np.split(d[f"h.{b}.attn.c_attn.weight"], 3, axis=-1)
            gpt.trf_blocks[b].att.W_query.weight = assign_check(gpt.trf_blocks[b].att.W_query.weight, q_w.T)
            gpt.trf_blocks[b].att.W_key.weight = assign_check(gpt.trf_blocks[b].att.W_key.weight, k_w.T)
            gpt.trf_blocks[b].att.W_value.weight = assign_check(gpt.trf_blocks[b].att.W_value.weight, v_w.T)
        
            q_b, k_b, v_b = np.split(d[f"h.{b}.attn.c_attn.bias"], 3, axis=-1)
            gpt.trf_blocks[b].att.W_query.bias = assign_check(gpt.trf_blocks[b].att.W_query.bias, q_b)
            gpt.trf_blocks[b].att.W_key.bias = assign_check(gpt.trf_blocks[b].att.W_key.bias, k_b)
            gpt.trf_blocks[b].att.W_value.bias = assign_check(gpt.trf_blocks[b].att.W_value.bias, v_b)
        
        
            gpt.trf_blocks[b].att.out_proj.weight = assign_check(gpt.trf_blocks[b].att.out_proj.weight, d[f"h.{b}.attn.c_proj.weight"].T)
            gpt.trf_blocks[b].att.out_proj.bias = assign_check(gpt.trf_blocks[b].att.out_proj.bias, d[f"h.{b}.attn.c_proj.bias"])
        
            gpt.trf_blocks[b].ff.layers[0].weight = assign_check(gpt.trf_blocks[b].ff.layers[0].weight, d[f"h.{b}.mlp.c_fc.weight"].T)
            gpt.trf_blocks[b].ff.layers[0].bias = assign_check(gpt.trf_blocks[b].ff.layers[0].bias, d[f"h.{b}.mlp.c_fc.bias"])
            gpt.trf_blocks[b].ff.layers[2].weight = assign_check(gpt.trf_blocks[b].ff.layers[2].weight, d[f"h.{b}.mlp.c_proj.weight"].T)
            gpt.trf_blocks[b].ff.layers[2].bias = assign_check(gpt.trf_blocks[b].ff.layers[2].bias, d[f"h.{b}.mlp.c_proj.bias"])
        
            gpt.trf_blocks[b].norm1.scale = assign_check(gpt.trf_blocks[b].norm1.scale, d[f"h.{b}.ln_1.weight"])
            gpt.trf_blocks[b].norm1.shift = assign_check(gpt.trf_blocks[b].norm1.shift, d[f"h.{b}.ln_1.bias"])
            gpt.trf_blocks[b].norm2.scale = assign_check(gpt.trf_blocks[b].norm2.scale, d[f"h.{b}.ln_2.weight"])
            gpt.trf_blocks[b].norm2.shift = assign_check(gpt.trf_blocks[b].norm2.shift, d[f"h.{b}.ln_2.bias"])
        
            gpt.final_norm.scale = assign_check(gpt.final_norm.scale, d[f"ln_f.weight"])
            gpt.final_norm.shift = assign_check(gpt.final_norm.shift, d[f"ln_f.bias"])
            gpt.out_head.weight = assign_check(gpt.out_head.weight, d["wte.weight"])
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    
    
    import tiktoken
    import torch
    import torch.nn as nn
    from torch.utils.data import Dataset, DataLoader
    
    #####################################
    # Chapter 2
    #####################################
    
    
    class GPTDatasetV1(Dataset):
        def __init__(self, txt, tokenizer, max_length, stride):
            self.tokenizer = tokenizer
            self.input_ids = []
            self.target_ids = []
    
            # Tokenize the entire text
            token_ids = tokenizer.encode(txt)
    
            # Use a sliding window to chunk the book into overlapping sequences of max_length
            for i in range(0, len(token_ids) - max_length, stride):
                input_chunk = token_ids[i:i + max_length]
                target_chunk = token_ids[i + 1: i + max_length + 1]
                self.input_ids.append(torch.tensor(input_chunk))
                self.target_ids.append(torch.tensor(target_chunk))
    
        def __len__(self):
            return len(self.input_ids)
    
        def __getitem__(self, idx):
            return self.input_ids[idx], self.target_ids[idx]
    
    
    def create_dataloader_v1(txt, batch_size=4, max_length=256,
                             stride=128, shuffle=True, drop_last=True):
        # Initialize the tokenizer
        tokenizer = tiktoken.get_encoding("gpt2")
    
        # Create dataset
        dataset = GPTDatasetV1(txt, tokenizer, max_length, stride)
    
        # Create dataloader
        dataloader = DataLoader(
            dataset, batch_size=batch_size, shuffle=shuffle, drop_last=drop_last)
    
        return dataloader
    
    
    #####################################
    # Chapter 3
    #####################################
    class MultiHeadAttention(nn.Module):
        def __init__(self, d_in, d_out, block_size, dropout, num_heads, qkv_bias=False):
            super().__init__()
            assert d_out % num_heads == 0, "d_out must be divisible by n_heads"
    
            self.d_out = d_out
            self.num_heads = num_heads
            self.head_dim = d_out // num_heads  # Reduce the projection dim to match desired output dim
    
            self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
            self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
            self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
            self.out_proj = nn.Linear(d_out, d_out)  # Linear layer to combine head outputs
            self.dropout = nn.Dropout(dropout)
            self.register_buffer('mask', torch.triu(torch.ones(block_size, block_size), diagonal=1))
    
        def forward(self, x):
            b, num_tokens, d_in = x.shape
    
            keys = self.W_key(x)  # Shape: (b, num_tokens, d_out)
            queries = self.W_query(x)
            values = self.W_value(x)
    
            # We implicitly split the matrix by adding a `num_heads` dimension
            # Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
            keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
            values = values.view(b, num_tokens, self.num_heads, self.head_dim)
            queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
    
            # Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
            keys = keys.transpose(1, 2)
            queries = queries.transpose(1, 2)
            values = values.transpose(1, 2)
    
            # Compute scaled dot-product attention (aka self-attention) with a causal mask
            attn_scores = queries @ keys.transpose(2, 3)  # Dot product for each head
    
            # Original mask truncated to the number of tokens and converted to boolean
            mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
    
            # Use the mask to fill attention scores
            attn_scores.masked_fill_(mask_bool, -torch.inf)
    
            attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
            attn_weights = self.dropout(attn_weights)
    
            # Shape: (b, num_tokens, num_heads, head_dim)
            context_vec = (attn_weights @ values).transpose(1, 2)
    
            # Combine heads, where self.d_out = self.num_heads * self.head_dim
            context_vec = context_vec.reshape(b, num_tokens, self.d_out)
            context_vec = self.out_proj(context_vec)  # optional projection
    
            return context_vec
    
    
    #####################################
    # Chapter 4
    #####################################
    class LayerNorm(nn.Module):
        def __init__(self, emb_dim):
            super().__init__()
            self.eps = 1e-5
            self.scale = nn.Parameter(torch.ones(emb_dim))
            self.shift = nn.Parameter(torch.zeros(emb_dim))
    
        def forward(self, x):
            mean = x.mean(dim=-1, keepdim=True)
            var = x.var(dim=-1, keepdim=True, unbiased=False)
            norm_x = (x - mean) / torch.sqrt(var + self.eps)
            return self.scale * norm_x + self.shift
    
    
    class GELU(nn.Module):
        def __init__(self):
            super().__init__()
    
        def forward(self, x):
            return 0.5 * x * (1 + torch.tanh(
                torch.sqrt(torch.tensor(2.0 / torch.pi)) *
                (x + 0.044715 * torch.pow(x, 3))
            ))
    
    
    class FeedForward(nn.Module):
        def __init__(self, cfg):
            super().__init__()
            self.layers = nn.Sequential(
                nn.Linear(cfg["emb_dim"], 4 * cfg["emb_dim"]),
                GELU(),
                nn.Linear(4 * cfg["emb_dim"], cfg["emb_dim"]),
                nn.Dropout(cfg["drop_rate"])
            )
    
        def forward(self, x):
            return self.layers(x)
    
    
    class TransformerBlock(nn.Module):
        def __init__(self, cfg):
            super().__init__()
            self.att = MultiHeadAttention(
                d_in=cfg["emb_dim"],
                d_out=cfg["emb_dim"],
                block_size=cfg["ctx_len"],
                num_heads=cfg["n_heads"],
                dropout=cfg["drop_rate"],
                qkv_bias=cfg["qkv_bias"])
            self.ff = FeedForward(cfg)
            self.norm1 = LayerNorm(cfg["emb_dim"])
            self.norm2 = LayerNorm(cfg["emb_dim"])
            self.drop_resid = nn.Dropout(cfg["drop_rate"])
    
        def forward(self, x):
            # Shortcut connection for attention block
            shortcut = x
            x = self.norm1(x)
            x = self.att(x)   # Shape [batch_size, num_tokens, emb_size]
            x = self.drop_resid(x)
            x = x + shortcut  # Add the original input back
    
            # Shortcut connection for feed-forward block
            shortcut = x
            x = self.norm2(x)
            x = self.ff(x)
            x = self.drop_resid(x)
            x = x + shortcut  # Add the original input back
    
            return x
    
    
    class GPTModel(nn.Module):
        def __init__(self, cfg):
            super().__init__()
            self.tok_emb = nn.Embedding(cfg["vocab_size"], cfg["emb_dim"])
            self.pos_emb = nn.Embedding(cfg["ctx_len"], cfg["emb_dim"])
            self.drop_emb = nn.Dropout(cfg["drop_rate"])
    
            self.trf_blocks = nn.Sequential(
                *[TransformerBlock(cfg) for _ in range(cfg["n_layers"])])
    
            self.final_norm = LayerNorm(cfg["emb_dim"])
            self.out_head = nn.Linear(cfg["emb_dim"], cfg["vocab_size"], bias=False)
    
        def forward(self, in_idx):
            batch_size, seq_len = in_idx.shape
            tok_embeds = self.tok_emb(in_idx)
            pos_embeds = self.pos_emb(torch.arange(seq_len, device=in_idx.device))
            x = tok_embeds + pos_embeds  # Shape [batch_size, num_tokens, emb_size]
            x = self.drop_emb(x)
            x = self.trf_blocks(x)
            x = self.final_norm(x)
            logits = self.out_head(x)
            return logits
    
    
    def generate_text_simple(model, idx, max_new_tokens, context_size):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
    
            # Crop current context if it exceeds the supported context size
            # E.g., if LLM supports only 5 tokens, and the context size is 10
            # then only the last 5 tokens are used as context
            idx_cond = idx[:, -context_size:]
    
            # Get the predictions
            with torch.no_grad():
                logits = model(idx_cond)
    
            # Focus only on the last time step
            # (batch, n_token, vocab_size) becomes (batch, vocab_size)
            logits = logits[:, -1, :]
    
            # Get the idx of the vocab entry with the highest logits value
            idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch, 1)
    
            # Append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1)  # (batch, n_tokens+1)
    
        return idx
    
    
    #####################################
    # Chapter 5
    #####################################
    
    
    def text_to_token_ids(text, tokenizer):
        encoded = tokenizer.encode(text)
        encoded_tensor = torch.tensor(encoded).unsqueeze(0)  # add batch dimension
        return encoded_tensor
    
    
    def token_ids_to_text(token_ids, tokenizer):
        flat = token_ids.squeeze(0)  # remove batch dimension
        return tokenizer.decode(flat.tolist())
    
    
    def generate(model, idx, max_new_tokens, context_size, temperature, top_k=None):
    
        # For-loop is the same as before: Get logits, and only focus on last time step
        for _ in range(max_new_tokens):
            idx_cond = idx[:, -context_size:]
            with torch.no_grad():
                logits = model(idx_cond)
            logits = logits[:, -1, :]
    
            # New: Filter logits with top_k sampling
            if top_k is not None:
                # Keep only top_k values
                top_logits, _ = torch.topk(logits, top_k)
                min_val = top_logits[:, -1]
                logits = torch.where(logits < min_val, torch.tensor(float('-inf')).to(logits.device), logits)
    
            # New: Apply temperature scaling
            if temperature > 0.0:
                logits = logits / temperature
    
                # Apply softmax to get probabilities
                probs = torch.softmax(logits, dim=-1)  # (batch_size, context_len)
    
                # Sample from the distribution
                idx_next = torch.multinomial(probs, num_samples=1)  # (batch_size, 1)
    
            # Otherwise same as before: get idx of the vocab entry with the highest logits value
            else:
                idx_next = torch.argmax(logits, dim=-1, keepdim=True)  # (batch_size, 1)
    
            # Same as before: append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1)  # (batch_size, num_tokens+1)
    
        return idx
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    
    
    import torch
    
    gpt = GPTModel(BASE_CONFIG)
    
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    load_weights(gpt, gpt_hf)
    gpt.to(device);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    import tiktoken
    # from previous_chapters import generate, text_to_token_ids, token_ids_to_text
    
    torch.manual_seed(123)
    
    tokenizer = tiktoken.get_encoding("gpt2")
    
    # 此处为输入的文本
    content ="Hello,My name is Lihua"
    
    idx = text_to_token_ids(content, tokenizer).to(device)
    
    token_ids = generate(
        model=gpt,
        idx=idx,
        max_new_tokens=30,
        context_size=BASE_CONFIG["ctx_len"],
        top_k=1,
        temperature=1.0
    )
    
    print("Input text:\n", content)
    print("Output text:\n", token_ids_to_text(token_ids, tokenizer))
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    Input text:
    Hello,My name is Lihua
    Output text:
    Hello,My name is Lihua. I am a student at the University of California, Berkeley. I am a member of the Student Government Association. I am a member of the Student

  • 相关阅读:
    ChatTTS web应用;基于文本指导的图像生成;使用Groq和Llama3在几秒内生成整本书;协作机器人画家,可以根据语言描述或图像在画布上作画
    对比接口测试工具在自动化测试优缺点:Jmeter、Python、Postman
    面试中必不可少的性能优化专题~
    2022人工智能顶会时间序列论文汇总
    【21天python打卡】第4天 基础语法(2)
    MySQL基础(DDL、DML、DQL)
    双指针代码
    vulnhub靶场之HACK ME PLEASE
    【路径遍历漏洞】查找、利用、预防
    面向6G的无蜂窝大规模MIMO无线传输技术
  • 原文地址:https://blog.csdn.net/weixin_49977305/article/details/138097057