• matlab 轨迹生成函数


    jtraj

    计算两个构型之间的关节空间轨迹

    [q, qd, qdd] = jtraj(q0, qf, m)是关节空间轨迹q(MxN),其中关节坐标从q0(1xN)变化到qf(1xN)。使用五次(5阶)多项式,并默认速度和加速度为零边界条件。假设时间以m步从0到1变化。关节速度和加速度可以分别以qd(MxN)和qdd(MxN)的形式随机返回。轨迹q,qd和qdd是MxN矩阵,每个时间步有一行,每个关节有一列。

    [ q, qd, qdd] = jtraj( q0, qf, m, qd0, qdf)如前所述,但也规定了轨迹的初始和最终关节速度。

    [ q, qd, qdd] = jtraj( q0, qf, T)同上,但轨迹长度由时间向量T ( Mx1 )的长度定义。

    [ q, qd, qdd] = jtraj( q0, qf, T, qd0, qdf)如上,但指定轨迹和时间向量的初始和最终关节速度。

    ctraj

    两个位姿之间的笛卡尔轨迹。

    tc = ctraj(T0, T1, n)是一个从位姿T0到T1的笛卡尔轨迹(4x4xN),其中n个点沿路径遵循梯形速度曲线。笛卡尔轨迹是一个齐次变换序列,最后一个下标是点索引,即T( :, :, i)是沿路径的第i个点。

    tc = ctraj( T0, T1, s)如上,但s(Nx1)的元素指定沿路径的分数距离,这些值在[0 1]范围内。第i个点对应路径上的一个距离s(i)。

    若T0或T1等于[ ],则取其为单位矩阵
    在第二种情况下,S可以由一个标量轨迹生成器生成,如TPOLY或LSPB (默认)。

    mstraj

    多段多轴轨迹

    traj = mstraj( p, qdmax, tseg, q0, dt, tacc, Options)是一条N轴同时通过M段的轨迹( KxN )。每个片段为直线运动,片段之间用多项式混合连接。轴从q0(1xN)开始,通过矩阵p(MxN)的行定义的点穿过M - 1,在p的最后一行定义的点结束。轨迹矩阵每时间步有一行,每轴有一列。轨迹K中的步数是过孔点数和所适用的时间或速度限制的函数。

    • P(MxN)是一个过孔点矩阵,每过孔点1行,每轴1列。最后一个经过点即为终点。
    • QDMAX (1xN)为不能超过的轴速限制,
    • TSEG ( 1xM )是每个K片段的持续时间
    • Q0 ( 1xN )为初始坐标轴
    • DT为时间步长
    • TACC ( 1x1 )该加速时间适用于所有分段过渡
    • TACC ( 1xM )为每个片段的加速时间,TACC(i)为从片段i过渡到片段i + 1的加速时间。TACC(1)也为第1段起始时刻的加速时间。

    traj = mstraj( segment, qdmax, q0, dt, tacc, qd0, qdf, Options),但额外指定了初始和最终的轴心速度( 1xN )。

    • 只需指定QDMAX或TSEG中的一个,另一个设置为[ ]。
    • 如果没有指定输出参数,则绘制轨迹。
    • 路径长度K是过孔点数Q0、DT和TACC的函数。
    • 最终过孔点P(end, :)即为终点。
    • 运动有M段,从Q0到P(1, :)到P(2,:)…到P(end,:)。
    • 所有轴同时到达其过孔点。
    • 可以用于创建关节空间轨迹,其中每个轴是关节坐标。
    • 可以用来创建笛卡尔轨迹,其中"轴"对应于RPY或欧拉角形式的平移和定向。

    mtraj

    两点之间的多轴运动轨迹

    [q, qd, qdd] = mtraj(tfunc, q0, qf, m)是根据m步标量轨迹函数tfunc从构型q0 (1xN)变化到qf (1xN)的多轴轨迹( MxN )。关节速度和加速度分别为qd (MxN)和qdd (MxN)。轨迹输出为每时间步一行,每轴一列。

    轨迹的形状由标量轨迹函数tfunc给出
    [S,SD,SDD] = TFUNC(S0, SF, M);

    而tfunc的可能取值包括梯形轨迹的@lspb,或者多项式轨迹的@tpoly。

    [q, qd, qdd] = mtraj( tfunc, q0, qf, T)如上所述,但T (Mx1)是一个时间向量,它决定了轨迹上的点的数量。

    • 如果没有指定输出参数Q,则绘制QD和QDD。
    • 当TFUNC为@ tpoly时,除不能指定初始速度外,其结果与JTRAJ在功能上是等价的。JTRAJ在计算效率上略高。

    tpoly

    生成标量多项式轨迹

    [s, sd, sdd] = tpoly( s0, sf, m)是一个标量轨迹( Mx1 ),使用五次(5阶)多项式以m步从s0到sf平滑变化。速度和加速度可以选择地返回为sd ( Mx1 )和sdd ( Mx1 )。

    tpoly( s0, sf, m)如上,但在单个图中绘制s,sd和sdd随时间的变化。

    [s, sd, sdd] = tpoly(s0, sf, T)如上所述,但根据时间向量T(Mx1)的长度指定轨迹。

    lspb

    线性段用抛物线混合

    [s,

  • 相关阅读:
    多网站批量蜘蛛日志分析工具
    makfile的subst将空格替换为/的坑
    AntDesignBlazor示例——暗黑模式
    Worthington公司有关白蛋白,无核酸酶的分子特征
    Java 获取客户端ip返回127.0.0.1问题
    Android设计模式-享元模式
    记录一下在Ubuntu18.04下,程序窗口之间切换快捷键
    统一配置中心Config、Bus组件的使用以及 SpringCloud 微服务工具集总结
    嵌入式分享合集114
    性能测试 - 微服务架构
  • 原文地址:https://blog.csdn.net/zjh2883/article/details/137291268