目录
欢聚集团面向的是各个国家的用户市场,数据分析场景就要因地制宜。体现到大数据平台这一层,数据来源多样化,数据分析场景复杂,数据模型复用率低。在这样的业务现状下,原有的 OLAP 引擎已无法满足欢聚集团的整体数据分析需求,下文主要介绍如何基于StarRocks 构建灵活、极速、统一的全新 OLAP 分析平台。

数据平台支撑了从数据埋点上报到数据应用的全链路数据服务,提供了埋点管理平台、离线计算调度系统、实时计算平台、数据应用系统等众多数据产品, 实现闭环的一站式大数据平台服务。
总体架构分层上,可以分为数据集成、存储、计算、分析、应用。OLAP系统是分析层的核心引擎,支撑Ad-Hoc自助分析、多维分析数据服务、BI报表、标签画像等分析场景。
此前,我们使用 ClickHouse 作为 OLAP 引擎,但随着业务对灵活性要求越来越高, ClickHouse 遇到了难以逾越的瓶颈。因此,我们重新梳理了需求,试图寻找一款更加适合欢聚集团的 OLAP 引擎。针对出海业务的特殊性,大数据团队需要提供非常灵活多变、轻量、高效、包容的数据分析服务:
具体的诉求是:
在这种“既要又要还要”的诉求下,选型很困难。OLAP 常用的技术架构有预计算、MPP、索引。我们调研了这三类架构的典型 OLAP 引擎:
单一技术架构的引擎很难满足需求,因此我们把目标瞄向混合架构引擎:同时具有预计算、MPP 计算、支持索引的引擎。目前市面上这类引擎不多,比较成熟的有 Apache Doris 和 StarRocks。最后选择 StarRocks,原因是 StarRocks 的社区更加活跃,产品的背后还有一支大胆创新的强大技术团队,响应非常及时,我们对 StarRocks 的未来更有信心。

如上图所示,我们的 OLAP 系统架构非常简单轻量,与大数据平台上下游都做了整合。
StarRocks原生提供丰富的数据导入方式,Http模式的 Stream load、读 HDFS的Broker load、读消息中间件的 Routing load、Flink Connector、DataX、外表支持等,方便和大数据生态完成数据集成。StarRocks查询支持最为通用的MySQL JDBC 协议,集成到各种BI,数据应用系统几乎无成本。
目前我们内部整合了 OLAP 系统,下线了 ClickHouse,统一使用 StarRocks 作为解决方案,已经在实时查询、报表分析、监控等业务场景中大力推广,支撑了数百 TB 数据,数十个业务方,数百万查询量/天,总体查询性能 99 分位 200ms。
我们的 StarRocks 集群目前都是多业务共用,其中部分业务场景是大查询。例如 BI 报表一个Dashboard(数据看板)包含多个图表,打开 Dashboard时,所有图表一起加载,并且一般都是偏分析的SQL,资源开销较大。此时集群资源就有一个高峰,集群查询性能衰减,特别是小查询也会受到严重影响。下图中可以看到很多毛刺,都是大查询导致。

因为这个问题,难以保障数据基线 SLA,一段时间里我们不大敢把 StarRocks 大范围推广给业务使用。如果给每个业务搭建专用 StarRocks 集群,成本压力又太大。
StarRocks 2.2 版本开始支持资源隔离,支持配置资源组并分配资源 Quota,支持用户和资源组的绑定,可以有效将大查询业务场景隔离到专用的资源组,避免影响其他小查询。我们在 2022 年 Q2 上线了资源隔离功能,目前线上已经全部开启资源隔离,正在做OLAP业务推广。
确认资源组能有效隔离大查询、保护小查询。
我们的集群稳定性 SLA 主要包括:集群可用性 SLA 3个9,集群查询性能 95分位 3s,BI 业务慢查询率 1.5%。
我们部署了社区提供的prometheus+grafana监控FE、 BE的metrics监控方案,同时配置了告警。
另外在实践过程中,有时会收到业务反馈的sql慢查询问题,排查其原因,主要可以分为两类:
这些问题会影响查询性能和慢查询率SLA。为了发现和解决这些问题,做到提前感知、提前优化,我们需要监控所有的查询日志,并及时通知用户优化表结构和查询 SQL。
解决方案
StarRocks 查询状态监控。通过解析 audit.log 结合 explain SQL 的信息,统计每个慢 SQL的执行时间、内存使用、返回行数、扫描数据量等情况,对慢查询做到及时预警。主要流程可分为以下三个步骤:
1.解析audit.log
FE 的 audit.log 提供了查询类型,客户端 IP,查询用户名称,数据库名称,状态,扫描的数据大小,扫描的数据行数,结果数据行数,查询 ID(通过 ID 去 BE 日志找对应的查询资源),查询的 SQL;

2. 获取 Plan fragment
通过查询该 SQL 的逻辑执行计划(explain + sql);

3. 统计资源消耗
通过 fragment_id 查询当前物理执行计划所消费的资源:

最终实现方案如下图所示:

filebeat 采集 audit.log 和 be.INFO 日志发送到 Apache Kafka,然后 Flink SQL 聚合 query_id 和 fragment 的数据,并将数据写入到 MySQL。


整套监控系统已经在集团上线并平稳运行。上线后极大减轻了我们的运维工作,基本可以做到提前预防问题、发现问题、解决问题,有效保障了 SLA。
在以往的工作经验中,做平台的和上层用户会存在一些沟通障碍,用户往往不了解平台的架构,技术,能力,使用流程。平台技术做得再好,最终还是要通过服务用户来产生价值。为了能更好地服务用户,我们做了很多降低门槛的工作。
目前我们实现了一个 web 系统 StarRocks 管控台,用户在页面上自助申请用户、建库、建表、权限等。

目前我们 OLAP团队每周都会参加业务的产品周会,关注业务动向和痛点,从 OLAP 角度提供解决思路和咨询服务。同时增加与产品和业务团队的沟通,减少彼此之间的认知屏障。
我们最终的目的是为了更好地满足用户的分析查询场景,提高效率,服务业务。在未来使用 StarRocks 过程中,主要的优化方向有以下几点:
参考文章: