• FineBI与DeepBI针对用9行数据分析一篇完整的数据报告的速度对比


    #数据分析报告#

    在我们的理想化构想中,数据分析师如同诸葛亮一般,运筹帷幄之中,决策千里之外。他们似乎拥有无尽的资源,可以随心所欲地运用各种方法和模型。在这样的前提下,数据分析师理应能轻松驾驭复杂的数据,通过精湛的分析技巧揭示出潜藏在数据背后的深刻洞见。

    然而,现实中的数据分析工作远非如此简单。优秀的数据分析报告并不是简单地套用模型和方法就能得出的。相反,它需要分析师具备深厚的专业知识、敏锐的洞察力和灵活的思维方式。他们必须能够根据实际情况选择最合适的分析方法,而不是盲目地套用模板。

    此外,数据分析师还需要与企业内部各个部门紧密合作,确保所收集的数据准确、完整且具有代表性。他们的工作成果不仅仅是一份报告,更是对企业未来发展的有力支撑。通过精准的数据分析,他们可以帮助企业识别市场趋势、优化运营策略、提升竞争力。

    难道真的没有一个BI软件可以实现数据分析零门槛吗?

    当然不是,近期了解到一款DeepBI数据分析软件,它就已经实现了让数据分析面向大众。今天我们一起来看一下DeepBI 与 FineBI 对9行数据做一篇分析报告的对比。

    数据来源

    数据来源于美国某连锁零售超市的2010-2018年的经营数据,共9行11列

    数据介绍:

    总收入=商品销售收入+会员费收入

    总成本=商品成本+运营费用+税

    商品毛利=商品销售收入-商品成本

    净利润=总收入-总成本

    全部会员为总会员人数,付费会员是贡献会员费的会员人数

     

    1.FineBI分析报告过程

    看到这个数据是不是很震惊,总共9*11列的数据,就这么点数据能分析出啥,还想要一份详尽的数据分析报告,简直就是天方夜谭!!

    但是数据分析还是要做的,既然没有头绪,那就先来套数据分析模型吧!是否可以将数据按照用户群体划分,使用RFM模型来完成呢?然而,想象是美好的,现实是骨感的,第一步就给Pass了,因为当前拿到的都是按照年度汇总的数据,并没有具体的商品和用户的信息,此法不通。

    后来围绕分析主题和已有的数据,打算先从整体上对超市的经营情况进行分析,然后根据每个指标对应的关系进行拆解,先总后分,也就是使用的多维度拆解的分析方法。把握北极星指标,也就是针对净利润展开分析。

    首先是净利润本身,通过对比不同年份的数据,对公司的整体情况进行评价,了解企业的发展趋势和变化。而净利润=收入-成本,再对收入、成本进行多维度的分析,在分析收入的过程中,还对会员数据进行了分析,层层拆解以分析超市的整体盈亏情况,如下图所示。

    主要分以下四个部分:

    1.总体分析:展示总体的利润、收入以及成本的数据趋势,了解企业的盈亏情况。

    2.收入分析:比较总收入、商品销售收入和会员费收入的趋势和占比,了解各类收入的变化情况和贡献比例。

    3.成本分析:比较总成本、商品成本、税和运营费用的占比和趋势,了解各类成本的构成比例以及比例的变化趋势。

    4.会员分析:分析全部会员人数和付费会员数的趋势,以及会员费及客单价的情况,了解会员结构和贡献比例。

    总体分析

    在对数据进行总体分析版块,需要对超市的整体发展做一个初步评价,从整体上来看超市的发展状况,因此将净利润、总收入、总成本以及会员费收入这四个关键指标进行了增率计算。即:(本年的数据-上年的数据)/上年的数据。

    接着合并本年和去年数据,由于数据集中没有展示上年的数据,故增加一个辅助列,通过公式:去年年份=年份-1来计算去年年份,然后通过左右合并的形式把去年的数据加入数据集当中。

    字段设置,为了让今年数据与去年数据作区分,使用字段设置功能对字段作区分。

    计算核心指标环比增长率,考虑到第一年的数据为null,遂用if语句将其环比增长率设置为null,防止出现分母为空计算错误的情况。具体公式见下图,并按此方法完成总成本、总收入、净利润的环比计算。

    这样我们就完成了经营分析信息的初步整理了,并把这个数据集命名为经营分析数据表。

    总收入分析

    涉及到总收入的数据分别是会员费收入、商品销售,对于分类的展示需要再新建一个数据集

    我们使用了Fine BI列转行功能,发现把对应字段名字放到列字段了,并分别给出对应的数值,以前在sql上要用case when,完了之后还要用union all上下合并。

    还用了条件标签列,把收入和成本的指标分的清清楚楚,最后还计算了每一项的占比。这个分类数据集就做好了,命名为经营分析收支占比表。

     

    总成本分析

    总成本由商品成本、运营费用以及税收3大类组成,同上,需要明确各类在总成本中所占的比例,因此先需要计算各类在总收入中所占的比例,这里与收入分析使用同样的数据集。

    商品分析

    让我们回到一开始做的经营分析数据表。为商品分析增加一些计算指标吧,作为零售企业,商品的分析尤为重要,商品成本控制很大程度上代表了利润空间,于是用商品成本/商品销售收入计算商品成本控制率。

    会员分析

    最大的收入来源不就来源于会员么,会员分为付费会员和普通会员,注意这里的普通会员并不是不付费,而只是没有给会员费,两者都是提供消费的群体。

    首先对会员平均消费金额进行计算,等于每一个会员平均购买商品的金额,计算公式是:商品总收入/全部会员数,但是注意这里的单位不同,需要进行转化处理。

    即使是只有两个层次的用户,也得进行分层管理和分析!!先计算了会员数量的占比,发现每一年基本都是一样一样的,都是55%,推断出付费用户占比基本保持不变。

    FineBI可视化报告

    看一下仪表板内的报告可视化吧

    总体分析

    通过观察后得出以下结论:

    1.净利润从2010年的13.0亿美元增至2018年的31.3亿美元,反映超市的盈利能力较好,经营状况良好,但净利润浮动较大,仍需控制好成本;

    2.总成本从2010年的766.5亿美元,到2018年的1384.4亿美元,说明超市在发展的同时,其成本也在逐年增高,但增速放缓,说明超市能够有效地控制成本。

    3.总收入也从2010年的779.5亿美元,增至2018年的1415.7亿美元,上涨近一倍,说明超市的业务规模扩大,可能占据了相对较大份额。

    总收入分析

    结论:总收入由商品销售、会员费收入构成

    1.商品销售占总收入的98%,会员费收入占比2%,意味着超市的主要盈利来源是其销售的商品,且商品销售一直处于稳步增长的状态,表示超市售卖情况良好;

    2.会员费收入虽然仅占比2%,比例并不高,也并非可以忽视,虽然不是总收入的较大贡献角色,但与商品销售几乎是相同的增长趋势,未来应该着重于提高会员消费力度,以增加会员费收入。

    3.尽管会员费收入在整体营收中所占份额相对较小,但其增长趋势却持续而稳定。从2010年的16.9亿美元增长至2018年的31.4亿美元,这一增长不仅证明了会员业务的稳健发展,更凸显了其潜力。尤其是自2015年以来,会员费收入的增速明显加快,这为进一步拓展会员业务提供了有力支撑。

    总成本分析

    结论:总成本由商品成本、运营费用、税构成,商品成本所占比重最大,为88%,运营费用次之,占比10.1%,税的占比最小1.1%

    1.总成本从2010的766.5亿美元到2018年的1384.4亿美元,有明显的增长;

    2.商品成本由2010年的680.0亿美元到2018年的1231.8亿美元,随着超市的发展,商品成本也在不断增加;

    3.运营成本随着超市的发展,虽然增长不是很明显,但也在逐年发生变化;

    4.税收虽占比最小,但增速较快,不过自2017年开始下降,说明超市在合理合法的情况下,明显优化了税务结构;

    5.虽然运营成本、税收总额相对商品成本较小,但若加以调整,总成本或有所下降。

    商品毛利分析


    结论:商品毛利 = 商品销售收入-商品成本,随着年份的增长,商品销售收入和商品成本在逐步增长,其中,

    1.尽管商品成本从2010年的680.0亿美元增加到2018年的1231.8亿美元,但商品销售收入的增长更为显著,从726.6亿美元跃升至1384.3亿美元。这表明在这一时期内,商品销售收入的增长速度超过了商品成本的变化;

    2.商品毛利也在随着时间在日益增长,说明超市除了做好销售以外,也很好地控制了成本。

    3.尽管商品成本从2010年的680.0亿美元增加到2018年的1231.8亿美元,但零售行业在成本控制方面仍然保持有效的内部控制策略,使得商品成本控制率基本保持稳定。理想的成本控制目标是将商品成本占商品销售收入的比重维持在85%至95%的范围内。为实现这一目标,零售企业可以进一步实施有效的成本控制措施,例如选择提供更高质量且价格合理的供应商,以优化采购渠道和降低成本。通过持续的成本控制努力,零售企业可以在保持竞争力的同时,提高盈利能力。

    会员分析

    结论:

    1.会员人数与付费会员人数随着年份的变化在增加,说明超市一直在办理会员制活动,通过会员制对用户进行挽留和刺激多次消费;

    2.超市的付费会员在整体会员人数中占据了约55%的比例,这一数字超过了半数,显著体现了超市提供的会员福利具有较好的吸引力。这可能意味着超市为会员提供了如积分兑换、折扣优惠、赠品等多种增值服务,从而激励了更多消费者选择成为付费会员,并享受这些独特的福利

     3.但自2011年开始,付费用户占比基本保持不变,会员转化率也处于下跌状态,超市需要加大在会员方面的经营力度。

     4.客单价近两年有所提升,建议继续保持优势,如增加产品种类、提高产品质量、优化产品价格、提供更好的服务。

    FineBI最终的结论


    超市经营表现良好

    1.净利润、总收入从2010年开始到2018年间,基本保持增长趋势;

    2.总成本虽也在逐年增高,但增速放缓;

    3.会员费收入一直在保持增长的趋势,比较稳定,且自2015年增速较快。

    值得借鉴点

    1.总收入从2010-2018年,几乎翻了一番,说明超市的业务规模扩大,可能占据了相对较大份额;

    2.会员费收入虽然仅占比总收入2%,但一直保持稳步增长的状态,且付费会员人数也基本保持总会员人数的55%,超过一半,这表明会员服务较好;

    3.商品毛利也在随着时间在日益增长,说明超市除了做好商品销售以外,也很好地控制了成本;

    4.税收虽占比最小,但增速较快,不过自2017年开始下降,说明超市在合理合法的情况下,明显优化了税务结构。

    建议

    1.2012年开始,会员转化率基本处于下跌状态,需要加大力度对现有用户进行维系并吸引更多新用户加入,可以考虑提升会员福利的质量和多样性,例如定制化产品推荐、专属折扣券等,也可以通过数据分析和用户反馈来了解会员的需求和行为习惯,从而针对性地改进会员服务;

    2.运营成本、税收在总成本中占比共12.2%,虽份额较小,但也一直处于增长的状态,还需要对运营费用和税收结构进行优化,尽可能降低总成本。

    使用FineBI总结

    太不容易了,拖拖拽拽,数据集在一起的时候,字段很容易拖错,有时候一不小心有可能使之前的操作也功亏一篑。再有根据可视化图表进行总结得出结论。

    2.DeepBI分析报告过程


    上传数据集后,我们可以把任何问题直接抛给DeepBI,让它为我们工作:

    总体分析及可视化


    这个图表呈现了某连锁零售超市从2010年至2018年的净利润、总收入以及总成本数据。从这些数据可以看出以下几点:

    净利润Net Profit):随着时间的推移,净利润持续上升,这表明公司的盈利能力在增强。

    总收入(Total Revenue):随着每年的增加而增加,反映了公司销售收入的增长趋势。

    总成本Total Cost):总成本与总收入增长相似,说明了公司在扩大业务规模的同时,能够有效地控制成本。

    怎么样?是不是不敢相信?不但数据可视化展示出来,而且分析报告也不需要我们自己编写了。

    为了不啰嗦,后面的截图就不再把报告复制出来了

    总收入分析及可视化

    总收入分析可视化需要从收入占比、商品销售及会员费收入变化、收入占比趋势着手,我们不用仪表板了,来看一下分别可视化到底有多简单:

    收入占比:


    没错就是简单提需求就可以。

    商品销售及会员费收入变化:

    收入占比趋势:

    我们再让DeepBI总结一下:

    总成本分析及可视化

    成本占比:

    税和运营费用成本变化:

    年度成本占比趋势:


    商品毛利分析及可视化

    商品成本以及销售收入变化趋势:

    商品毛利趋势:

    商品成本控制率:

    会员分析及可视化

    会员人数变化趋势:

     

    DeepBI最终结论

    我们还是把问题丢给DeepBI,让它进一步得出结论,看截图:


    让我们再来看一下DeepBI能在这9行数据中给出什么建议:


    有这样的提问就能出结果的BI工具,你还会选择传统的BI工具自己绞尽脑汁去思考数据关系、再拖拖拽拽以及组织语言编写报告吗?

    使用DeepBI总结

    有了DeepBI真的不需要再费脑筋组织语言编写报告了,数据可视化也不需要自己拖拖拽拽和自己学习如何运用函数了,简直太方便了,一句话实现数据可视化。

    最后总结

    只有实际经历过的人才知道这样的数据分析是多么的让人无助,但是DeepBI的出现已经开启了数据分析新时代,不需要拖拖拽拽,不需要自己再苦思冥想数值之间的关系生成可视化图,更不需要有任何代码基础和复杂的函数基础。

    使用传统BI工具,一般的数据报告怎么样也得1-2天时间才能完成,而且需要我们有一定的数据分析基础,需要数据可视化的话还得有SQL语言和Python基础等等,以及报告编写能力。

    而DeepBI仅需几分钟便能自行完成,这真是大大的“降本增效”!不需要任何编程基础,有了DeepBI人人都是数据分析师,真是实现了“数据分析零门槛”。

    DeepBI已经在GitHub开源:https://github.com/DeepInsight-AI/DeepBI

    有兴趣的朋友可以用其他的软件也做一下数据分析报告,数据集很简单,自己根据文章开头截图就能自己做出来,再和DeepBI对比一下,如果有比它更好用的BI数据分析工具大家可以评论区留言!

  • 相关阅读:
    基于tushare和mongo,玩转qlib自带的数据库
    使用element-plus 完成密码再次验证(修改密码)
    PX4模块设计之二十六:BatteryStatus模块
    不想引入mq?试试debezium
    芯科科技与Arduino携手推动Matter普及化
    【Mybatis】Map传参和模糊查询
    阿里云服务器使用经验总结
    String-Worker 让创建 WebWorker 更轻松
    [Codeforces] number theory (R1600) Part.10
    连接池快速入门
  • 原文地址:https://blog.csdn.net/2301_81759194/article/details/136242293