f
(
x
)
=
P
n
(
x
)
+
R
n
(
x
)
f(x)=P_n(x)+R_n(x)
f(x)=Pn(x)+Rn(x)
P
n
(
x
)
=
∑
0
n
f
(
k
)
(
x
0
)
k
!
(
x
−
x
0
)
k
P_n(x)=\sum_0^n\frac{f^{(k)}(x_0)}{k!}(x-x_0)^k
Pn(x)=∑0nk!f(k)(x0)(x−x0)k
R
n
(
x
)
=
f
(
n
+
1
)
(
ξ
x
0
)
(
n
+
1
)
!
(
x
−
x
0
)
n
+
1
R_n(x)=\frac{f^{(n+1)}(\xi{x_0})}{(n+1)!}(x-x_0)^{n+1}
Rn(x)=(n+1)!f(n+1)(ξx0)(x−x0)n+1