• 数据湖的概念、发展背景和价值


    数据湖是一个集中化的存储系统,旨在以低成本、大容量的方式,无需预先对数据进行结构化处理,存储各种结构化和非结构化数据。以下是数据湖概念、发展背景和价值的详细介绍

    数据湖概念

    数据湖的概念源自于对传统数据仓库的补充。传统数据仓库通常要求对数据进行预处理和结构化,而数据湖则提供了一个中央化的存储库,允许直接存储原始、未加工的数据。其典型分层结构如下图所示。

    发展背景

    互联网早期:初始阶段,各公司的数据量较小,使用基于关系型数据库的简单数据架构。然而,随着互联网的爆发,数据量急剧增长,传统的数据库架构出现了问题,无法支撑大规模数据的存储和处理。

    Hadoop的出现:Hadoop通过开源方式成为大数据分析的分水岭。然而,Hadoop在某些方面存在局限性,如不支持事务、缺少Schema等,引发了对数据管理和可用性的新问题。

    Hadoop+数据仓库为解决Hadoop本身的缺陷,用户选择将Hadoop与数据仓库结合使用然而,这种数据架构重新引入了数据孤岛问题,导致数据冗余和运维上的复杂性。同时也带来了新的挑战,如数据一致性和运维成本的管理。

    数据湖的涌现:数据湖的引入是为了弥补Hadoop和数据仓库各自的不足,提供了低成本、大容量、事务支持等综合性能,为企业提供更灵活、更综合的数据存储和处理方案。

    数据湖的引入及价值

    为满足用户对系统既具备Hadoop低成本大容量优势又具备数据仓库ACID事务等能力的需求,数据湖应运而生。数据湖可被理解为一种融合了Hadoop和数据仓库优势的技术。它建立在低成本分布式存储之上,提供更好的事务和性能支持,形成了统一的数据存储系统。数据湖的价值如下: 

    综合数据存储: 数据湖能够容纳各种结构化和非结构化数据,无需预处理,为企业提供了一个统一的数据存储平台。

    低成本大容量: 借助Hadoop的优势,数据湖提供了低成本和大容量的存储能力,使企业能够经济高效地管理海量数据。

    灵活性和扩展性: 数据湖结合了Hadoop的灵活性和扩展性,支持多种数据类型和大规模数据的存储和处理。

    ACID事务支持: 数据湖继承了数据仓库的ACID事务支持,提高了数据的可靠性和一致性,使其更适用于关键业务场景。

    解决数据孤岛问题: 数据湖通过统一的数据存储系统,解决了Hadoop和数据仓库搭配使用时可能出现的数据冗余和数据孤岛问题。

    综上所述,数据湖的出现为企业提供了更灵活、更综合、更经济的数据管理和分析解决方案,使其能够更好地利用数据资产,做出更明智的决策。

  • 相关阅读:
    干货整理!ERP在制造业的发展趋势如何,看这一篇就够了
    Python计算器(包含机制转换)
    M2DGR数据集各相机话题名与外参名的对应关系
    【STM32】使用RTE ,从 0 开始创建一个 (keil) ARM MDK工程(纯keil,标准库,以STM32F103C8T6为例)
    计算机图像处理:图像轮廓
    “热帖”统计
    CTFSHOW 年CTF
    WavJourney:进入音频故事情节生成世界的旅程
    狂神说Es
    随机分布式延迟PSO(RODDPSO)+K-Means算法(Python代码实现)
  • 原文地址:https://blog.csdn.net/m0_60258751/article/details/134509840