码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • 【差分演化算法相关文献总结】


    差分演化算法相关文献总结

    • 前言
    • 概述
    • 文献综述
    • 总结

    前言

      本人作为一名从事了三年演化算法研究的菜鸡研究生,其中大部分时间都在专注于差分演化算法(Differential Evolution, DE)的相关研究。现如今已经毕业,回顾往昔,经过阅读大量的文献,也算是浅浅的入了演化算法的门。
      本文将总结出我在读研期间所收集和阅读过的与 DE 相关的一些论文,以供从事演化算法研究,尤其是 DE 算法研究的各位学者们进行学习和参考。下面我会附上论文的名称和对应的连接,感兴趣的小伙伴可自行下载阅读。
      首先,我们还是先附上 DE 原文:
    Storn R, Price K. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11: 341-359.

    概述

      在众多的演化算法中,差分演化算法作为一种经典、高效的元启发算法,具有参数少、收敛快、鲁棒性高等优点,使其一度成为了演化计算领域的热点。在2006年至2009年由IEEE举办的CEC演化大赛中,DE连续取得了第一的名次,并且在近三年的竞赛中,DE依旧具有更好的竞争力。DE是由Storn于1995所提出的一种具有较强鲁棒性的优化算法,通过基于种群的随机搜索方式来进行演化更新,每一代的个体都会经历突变、交叉和选择操作,从而将种群不断向全局最优引导。由于其具有较强的鲁棒性和简单性,DE进化已成功地应用于医疗问题优化、工程设计、路径规划、计算机视觉等各种领域中,并取得了显著的效果。
      虽然DE存在许多的优点且受到了广泛的使用,但是该算法依旧存在较多的问题和提升空间,如较多的参数设置、演化寻优的随机性较大、种群多样性的丧失、算法易陷入局部最优、算法早熟、搜索停滞等现象。此类问题的出现会降低DE的算法性能,在解决实际优化问题时会造成不同程度的影响。所以,受到实际问题的驱动,对DE算法的改进和优化从未停止,众多研究者对DE存在的问题进行了讨论及优化。现如今,已有大量的DE变体被提出,极大程度的提高了算法的性能。

    在这里插入图片描述

    文献综述

    1. Brest J, Greiner S, Boskovic B, et al. Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems[J]. IEEE transactions on evolutionary computation, 2006, 10(6): 646-657.
    2. Qin A K, Huang V L, Suganthan P N. Differential evolution algorithm with strategy adaptation for global numerical optimization[J]. IEEE transactions on Evolutionary Computation, 2008, 13(2): 398-417.
    3. Fan Q, Wang W, Yan X. Differential evolution algorithm with strategy adaptation and knowledge-based control parameters[J]. Artificial Intelligence Review, 2019, 51: 219-253.
    4. Wang Y, Cai Z, Zhang Q. Differential evolution with composite trial vector generation strategies and control parameters[J]. IEEE transactions on evolutionary computation, 2011, 15(1): 55-66.
    5. Zhang J, Sanderson A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on evolutionary computation, 2009, 13(5): 945-958.
    6. Mallipeddi R, Suganthan P N, Pan Q K, et al. Differential evolution algorithm with ensemble of parameters and mutation strategies[J]. Applied soft computing, 2011, 11(2): 1679-1696.
    7. Mallipeddi R, Suganthan P N. Differential evolution algorithm with ensemble of parameters and mutation and crossover strategies[C]//Swarm, Evolutionary, and Memetic Computing: First International Conference on Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010, Chennai, India, December 16-18, 2010. Proceedings 1. Springer Berlin Heidelberg, 2010: 71-78.
    8. Wu G, Mallipeddi R, Suganthan P N, et al. Differential evolution with multi-population based ensemble of mutation strategies[J]. Information Sciences, 2016, 329: 329-345.
    9. Tanabe R, Fukunaga A. Success-history based parameter adaptation for differential evolution[C]//2013 IEEE congress on evolutionary computation. IEEE, 2013: 71-78.
    10. Li X, Wang L, Jiang Q, et al. Differential evolution algorithm with multi-population cooperation and multi-strategy integration[J]. Neurocomputing, 2021, 421: 285-302.
    11. Das S, Mullick S S, Suganthan P N. Recent advances in differential evolution–an updated survey[J]. Swarm and evolutionary computation, 2016, 27: 1-30.
    12. Hassan S, Hemeida A M, Alkhalaf S, et al. Multi-variant differential evolution algorithm for feature selection[J]. Scientific Reports, 2020, 10(1): 17261.
    13. Ahandani M A. Opposition-based learning in the shuffled bidirectional differential evolution algorithm[J]. Swarm and Evolutionary Computation, 2016, 26: 64-85.
    14. Liu X F, Zhan Z H, Lin Y, et al. Historical and heuristic-based adaptive differential evolution[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 49(12): 2623-2635.
    15. Ortiz M L, Xiong N. Using random local search helps in avoiding local optimum in differential evolution[C]//Proc. IASTED. 2014: 413-420.
    16. Fan Q, Yan X. Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies[J]. IEEE transactions on cybernetics, 2015, 46(1): 219-232.
    17. Tian M, Gao X, Dai C. Differential evolution with improved individual-based parameter setting and selection strategy[J]. Applied Soft Computing, 2017, 56: 286-297.
    18. Gong W, Cai Z, Liang D. Adaptive ranking mutation operator based differential evolution for constrained optimization[J]. IEEE transactions on cybernetics, 2014, 45(4): 716-727.
    19. Tanabe R, Fukunaga A S. Improving the search performance of SHADE using linear population size reduction[C]//2014 IEEE congress on evolutionary computation (CEC). IEEE, 2014: 1658-1665.
    20. ZDT D T. Performance analysis of variants of differential evolution on multi-objective optimization problems[J]. Indian Journal of Science and Technology, 2015, 8(17): 65727.
    21. Peng H, Guo Z, Deng C, et al. Enhancing differential evolution with random neighbors based strategy[J]. Journal of Computational Science, 2018, 26: 501-511.
    22. Yu W J, Shen M, Chen W N, et al. Differential evolution with two-level parameter adaptation[J]. IEEE Transactions on Cybernetics, 2013, 44(7): 1080-1099.
    23. Wang Y, Li H X, Huang T, et al. Differential evolution based on covariance matrix learning and bimodal distribution parameter setting[J]. Applied Soft Computing, 2014, 18: 232-247.
    24. Xia X, Tong L, Zhang Y, et al. NFDDE: A novelty-hybrid-fitness driving differential evolution algorithm[J]. Information Sciences, 2021, 579: 33-54.
    25. Brest J. Constrained real-parameter optimization with ε-self-adaptive differential evolution[M]. Springer Berlin Heidelberg, 2009.
    26. Huynh T N, Do D T T, Lee J. Q-Learning-based parameter control in differential evolution for structural optimization[J]. Applied Soft Computing, 2021, 107: 107464.
    27. Meng Z, Yang C. Hip-DE: Historical population based mutation strategy in differential evolution with parameter adaptive mechanism[J]. Information Sciences, 2021, 562: 44-77.
    28. Li S, Gu Q, Gong W, et al. An enhanced adaptive differential evolution algorithm for parameter extraction of photovoltaic models[J]. Energy Conversion and Management, 2020, 205: 112443.
    29. Hao Q, Zhou Z, Wei Z, et al. Parameters identification of photovoltaic models using a multi-strategy success-history-based adaptive differential evolution[J]. IEEE Access, 2020, 8: 35979-35994.
    30. Huang Q, Zhang K, Song J, et al. Adaptive differential evolution with a Lagrange interpolation argument algorithm[J]. Information Sciences, 2019, 472: 180-202.
    31. Gong W, Cai Z, Ling C X, et al. Enhanced differential evolution with adaptive strategies for numerical optimization[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 2010, 41(2): 397-413.
    32. Qian W, Chai J, Xu Z, et al. Differential evolution algorithm with multiple mutation strategies based on roulette wheel selection[J]. Applied Intelligence, 2018, 48: 3612-3629.
    33. Liu Z Z, Wang Y, Yang S, et al. Differential evolution with a two-stage optimization mechanism for numerical optimization[C]//2016 IEEE congress on evolutionary computation (CEC). IEEE, 2016: 3170-3177.
    34. Wang Y, Yu J, Yang S, et al. Evolutionary dynamic constrained optimization: Test suite construction and algorithm comparisons[J]. Swarm and Evolutionary Computation, 2019, 50: 100559.
    35. Li Y, Wang S, Liu H, et al. A backtracking differential evolution with multi-mutation strategies autonomy and collaboration[J]. Applied Intelligence, 2022: 1-27.
    36. Ali I M, Essam D, Kasmarik K. Novel binary differential evolution algorithm for knapsack problems[J]. Information Sciences, 2021, 542: 177-194.
    37. Xie W, Yu W, Zou X. Diversity-maintained differential evolution embedded with gradient-based local search[J]. Soft computing, 2013, 17: 1511-1535.
    38. Peng H, Wu Z. Heterozygous differential evolution with Taguchi local search[J]. Soft Computing, 2015, 19: 3273-3291.
    39. Liao J, Cai Y, Wang T, et al. Cellular direction information based differential evolution for numerical optimization: an empirical study[J]. Soft Computing, 2016, 20: 2801-2827.
    40. Kaelo P, Ali M M. A numerical study of some modified differential evolution algorithms[J]. European journal of operational research, 2006, 169(3): 1176-1184.
    41. Brest J, Maučec M S, Bošković B. Single objective real-parameter optimization: Algorithm jSO[C]//2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017: 1311-1318.
    42. Tan Z, Li K, Wang Y. Differential evolution with adaptive mutation strategy based on fitness landscape analysis[J]. Information Sciences, 2021, 549: 142-163.
    43. Zuo Y, Zhao F, Li Z. A knowledge-based differential covariance matrix adaptation cooperative algorithm[J]. Expert Systems with Applications, 2021, 184: 115495.
    44. Zeng Z, Zhang M, Chen T, et al. A new selection operator for differential evolution algorithm[J]. Knowledge-Based Systems, 2021, 226: 107150.
    45. Lu Z, Zhang L, Wang D. Differential evolution with improved elite archive mutation and dynamic parameter adjustment[J]. Cluster Computing, 2019, 22: 9347-9356.
    46. Zhang X, Zhang X. Improving differential evolution by differential vector archive and hybrid repair method for global optimization[J]. Soft Computing, 2017, 21: 7107-7116.
    47. Das S, Konar A, Chakraborty U K. Two improved differential evolution schemes for faster global search[C]//Proceedings of the 7th annual conference on Genetic and evolutionary computation. 2005: 991-998.
    48. Yang Z, Yao X, He J. Making a difference to differential evolution[J]. Advances in metaheuristics for hard optimization, 2008: 397-414.
    49. Das S, Konar A, Chakraborty U K. Two improved differential evolution schemes for faster global search[C]//Proceedings of the 7th annual conference on Genetic and evolutionary computation. 2005: 991-998.
    50. Liang J, Qiao K, Yu K, et al. Parameters estimation of solar photovoltaic models via a self-adaptive ensemble-based differential evolution[J]. Solar Energy, 2020, 207: 336-346.
    51. Cui L, Huang Q, Li G, et al. Differential evolution algorithm with tracking mechanism and backtracking mechanism[J]. IEEE Access, 2018, 6: 44252-44267.
    52. Meng Z, Chen Y, Li X. Enhancing differential evolution with novel parameter control[J]. IEEE Access, 2020, 8: 51145-51167.
    53. Zou D, Gong D. Differential evolution based on migrating variables for the combined heat and power dynamic economic dispatch[J]. Energy, 2022, 238: 121664.
    54. Zhou X G, Zhang G J, Hao X H, et al. Differential evolution with multi-stage strategies for global optimization[C]//2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016: 2550-2557.
    55. Mohamed A K, Mohamed A W. Real-parameter unconstrained optimization based on enhanced AGDE algorithm[J]. Machine learning paradigms: Theory and application, 2019: 431-450.
    56. Cui L, Li G, Zhu Z, et al. Adaptive multiple-elites-guided composite differential evolution algorithm with a shift mechanism[J]. Information Sciences, 2018, 422: 122-143.
    57. Kizilay D, Tasgetiren M F, Oztop H, et al. A differential evolution algorithm with q-learning for solving engineering design problems[C]//2020 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2020: 1-8.
    58. Sharma M, Komninos A, López-Ibáñez M, et al. Deep reinforcement learning based parameter control in differential evolution[C]//Proceedings of the Genetic and Evolutionary Computation Conference. 2019: 709-717.
    59. Tan Z, Li K. Differential evolution with mixed mutation strategy based on deep reinforcement learning[J]. Applied Soft Computing, 2021, 111: 107678.
    60. Zhang H, Sun J, Xu Z. Learning to mutate for differential evolution[C]//2021 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2021: 1-8.
    61. El-Qulity S A, Mohamed A W. A generalized national planning approach for admission capacity in higher education: a nonlinear integer goal programming model with a novel differential evolution algorithm[J]. Computational Intelligence and Neuroscience, 2016, 2016: 21-21.
    62. Mohamed A W. An improved differential evolution algorithm with triangular mutation for global numerical optimization[J]. Computers & Industrial Engineering, 2015, 85: 359-375.
    63. Mohamed A W, Mohamed A K. Adaptive guided differential evolution algorithm with novel mutation for numerical optimization[J]. International Journal of Machine Learning and Cybernetics, 2019, 10: 253-277.
    64. Wu G, Shen X, Li H, et al. Ensemble of differential evolution variants[J]. Information Sciences, 2018, 423: 172-186.
    65. Mohamed A W, Hadi A A, Jambi K M. Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization[J]. Swarm and Evolutionary Computation, 2019, 50: 100455.
    66. Mohamed A W, Hadi A A, Mohamed A K. Differential evolution mutations: taxonomy, comparison and convergence analysis[J]. IEEE Access, 2021, 9: 68629-68662.
    67. Mohamed A W, Hadi A A, Fattouh A M, et al. LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems[C]//2017 IEEE Congress on evolutionary computation (CEC). IEEE, 2017: 145-152.
    68. Kumar A, Misra R K, Singh D. Improving the local search capability of effective butterfly optimizer using covariance matrix adapted retreat phase[C]//2017 IEEE congress on evolutionary computation (CEC). IEEE, 2017: 1835-1842.
    69. Kudela J, Matousek R. Lipschitz-based surrogate model for high-dimensional computationally expensive problems[J]. arXiv preprint arXiv:2204.14236, 2022.
    70. Cui L, Huang Q, Li G, et al. Differential evolution algorithm with tracking mechanism and backtracking mechanism[J]. IEEE Access, 2018, 6: 44252-44267.
    71. Meng Z, Zhong Y, Yang C. CS-DE: Cooperative strategy based differential evolution with population diversity enhancement[J]. Information Sciences, 2021, 577: 663-696.
    72. Meng Z, Yang C. Hip-DE: Historical population based mutation strategy in differential evolution with parameter adaptive mechanism[J]. Information Sciences, 2021, 562: 44-77.
    73. Meng Z, Yang C, Li X, et al. Di-DE: depth information-based differential evolution with adaptive parameter control for numerical optimization[J]. IEEE Access, 2020, 8: 40809-40827.
    74. Biswas S, Saha D, De S, et al. Improving differential evolution through Bayesian hyperparameter optimization[C]//2021 IEEE Congress on evolutionary computation (CEC). IEEE, 2021: 832-840.
    75. Cui L, Li G, Lin Q, et al. Adaptive differential evolution algorithm with novel mutation strategies in multiple sub-populations[J]. Computers & Operations Research, 2016, 67: 155-173.
    76. Ge Y F, Yu W J, Lin Y, et al. Distributed differential evolution based on adaptive mergence and split for large-scale optimization[J]. IEEE transactions on cybernetics, 2017, 48(7): 2166-2180.
    77. Tan Z, Tang Y, Li K, et al. Differential evolution with hybrid parameters and mutation strategies based on reinforcement learning[J]. Swarm and Evolutionary Computation, 2022, 75: 101194.
    78. Gui L, Xia X, Yu F, et al. A multi-role based differential evolution[J]. Swarm and Evolutionary Computation, 2019, 50: 100508.
    79. Cao Z, Jia H, Wang Z, et al. A differential evolution with autonomous strategy selection and its application in remote sensing image denoising[J]. Expert Systems with Applications, 2023: 122108.
    80. Li C, Sun G, Deng L, et al. A population state evaluation-based improvement framework for differential evolution[J]. Information Sciences, 2023, 629: 15-38.
    81. Li Y, Wang S, Yang B, et al. Population reduction with individual similarity for differential evolution[J]. Artificial Intelligence Review, 2023, 56(5): 3887-3949.
    82. Ahmad M F, Isa N A M, Lim W H, et al. Differential evolution: A recent review based on state-of-the-art works[J]. Alexandria Engineering Journal, 2022, 61(5): 3831-3872.
    83. Song Y, Cai X, Zhou X, et al. Dynamic hybrid mechanism-based differential evolution algorithm and its application[J]. Expert Systems with Applications, 2023, 213: 118834.
    84. Wang M, Ma Y, Wang P. Parameter and strategy adaptive differential evolution algorithm based on accompanying evolution[J]. Information Sciences, 2022, 607: 1136-1157.
    85. Meng Z, Yang C. Two-stage differential evolution with novel parameter control[J]. Information Sciences, 2022, 596: 321-342.
    86. Piotrowski A P, Napiorkowski J J, Piotrowska A E. Particle swarm optimization or differential evolution—A comparison[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106008.
    87. Zhang S X, Wen Y N, Liu Y H, et al. Differential evolution with domain transform[J]. IEEE Transactions on Evolutionary Computation, 2022.
    88. Qiao K, Liang J, Yu K, et al. Self-adaptive resources allocation-based differential evolution for constrained evolutionary optimization[J]. Knowledge-Based Systems, 2022, 235: 107653.
    89. Qiao K, Liang J, Qu B, et al. Differential evolution with level-based learning mechanism[J]. Complex System Modeling and Simulation, 2022, 2(1): 35-58.
    90. Cao Z, Wang Z, Fu Y, et al. An adaptive differential evolution framework based on population feature information[J]. Information Sciences, 2022, 608: 1416-1440.
    91. Song Y, Zhao G, Zhang B, et al. An enhanced distributed differential evolution algorithm for portfolio optimization problems[J]. Engineering Applications of Artificial Intelligence, 2023, 121: 106004.
    92. Li Y, Han T, Tang S, et al. An improved differential evolution by hybridizing with estimation-of-distribution algorithm[J]. Information Sciences, 2023, 619: 439-456.
    93. Zeng Z, Zhang M, Hong Z, et al. Enhancing differential evolution with a target vector replacement strategy[J]. Computer Standards & Interfaces, 2022, 82: 103631.
    94. Zeng Z, Hong Z, Zhang H, et al. Improving differential evolution using a best discarded vector selection strategy[J]. Information Sciences, 2022, 609: 353-375.
    95. Vermetten D, van Stein B, Kononova A V, et al. Analysis of structural bias in differential evolution configurations[M]//Differential Evolution: From Theory to Practice. Singapore: Springer Nature Singapore, 2022: 1-22.
    96. Kitamura T, Fukunaga A. Differential Evolution with an Unbounded Population[C]//2022 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2022: 1-8.
    97. Gupta S, Su R. An efficient differential evolution with fitness-based dynamic mutation strategy and control parameters[J]. Knowledge-Based Systems, 2022, 251: 109280.
    98. Deng W, Ni H, Liu Y, et al. An adaptive differential evolution algorithm based on belief space and generalized opposition-based learning for resource allocation[J]. Applied Soft Computing, 2022, 127: 109419.
    99. Li Y, Wang S, Yang H, et al. Enhancing differential evolution algorithm using leader-adjoint populations[J]. Information Sciences, 2023, 622: 235-268.
    100. Chen J, Wang R, Wu D, et al. A differential evolution-enhanced position-transitional approach to latent factor analysis[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 7(2): 389-401.

    总结

      有关 DE 的相关论文不计其数,这里小编也不可能一一的列出。但是希望从事 DE 相关研究的学者能够不断的集思广益,多汲取一些大佬的思想,能够在算法优化上更上一层楼。
      我将收集到的一些论文进行了打包上传,链接如下:差分演化算法相关学术论文集合

  • 相关阅读:
    three.js/webgl实现室内模型行走
    【nvm】
    PCA算法(python版本)
    【Python办公自动化之Word】
    scrapy的selenium跑不起来
    从内网到公网:使用Axure RP和内网穿透技术发布静态web页面的完整指南
    重用Playbook
    Leetcode 01-算法入门与数组-④数组二分查找
    大数据相关积累
    干货复盘 | 银行数智化转型十大趋势
  • 原文地址:https://blog.csdn.net/qq_43899283/article/details/134407781
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号