- #pragma once
- namespace hqj1
- {
- template<class K>
- struct SBTreeNode
- {
- public:
- //这里直接用匿名对象作为缺省参数
- SBTreeNode(const K& key = K())
- :_key(key)
- , _cleft(nullptr)
- , _cright(nullptr)
- {}
- public:
- K _key;
- SBTreeNode* _cleft;
- SBTreeNode* _cright;
- };
-
- template<class K>
- class SBTree
- {
- typedef SBTreeNode<K> Node;
- public:
- SBTree()
- :_root(nullptr)
- {}
-
- bool Insert(const K& key)
- {
- if (_root == nullptr)
- _root = new Node(key);
- else
- {
- Node* cur = _root;
- Node* parent = nullptr;
- //找到要插入的位置
- while (cur)
- {
- parent = cur;
- if (cur->_key < key)
- cur = cur->_cright;
- else if (cur->_key > key)
- cur = cur->_cleft;
- else
- return false;
- }
-
- //连接
- cur = new Node(key);
- if (parent->_key < key)
- parent->_cright = cur;
- else
- parent->_cleft = cur;
- }
- return true;
- }
-
- Node* Find(const K& key)
- {
- Node* cur = _root;
- while (cur)
- {
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- else
- break;
- }
- return cur;
- }
-
- bool Erase(const K& key)
- {
- if (_root == nullptr)
- return false;
- else
- {
- //找出要删除元素的位置,复用查找函数也行
- Node* cur = _root;
- Node* parent = nullptr;
- while (cur)
- {
- if (cur->_key == key)
- break;
-
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- //对根进行特判
- if (parent == nullptr)
- {
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- delete _root;
- _root = nullptr;
- }
- else if (cur->_cleft == nullptr)
- _root = _root->_cright;
- else
- _root = _root->_cleft;
-
- return true;
- }
-
- //对不同情况进行处理
- //第一种是要删除的元素不在树内
- if (cur == nullptr)
- return false;
- else if (cur->_cleft == nullptr && cur->_cleft == cur->_cright)
- {
- //要删除的元素是叶子节点,直接删
- if (cur == parent->_cleft)
- parent->_cleft = nullptr;
- else
- parent->_cright = nullptr;
-
- delete cur;
- }
- else if (cur->_cleft == nullptr)
- {
- //有右子树但没有左子树
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cright;
- else
- parent->_cright = cur->_cright;
-
- delete cur;
- }
- else if (cur->_cright == nullptr)
- {
- //有左子树但没有右子树
- if (cur == parent->_cleft)
- {
- parent->_cleft = cur->_cleft;
- }
- else
- {
- parent->_cright = cur->_cleft;
- }
- delete cur;
- }
- else
- {
- //既有左子树又有右子树
- //找左子树的最右,或者找右子树的最左节点来替换掉当前要删除的节点
- Node* curRL = cur->_cright;
- Node* parentRL = cur;
- while (curRL->_cleft)
- {
- parentRL = curRL;
- curRL = curRL->_cleft;
- }
- //交换要删除的值和要删除节点的右树最左节点的值
- swap(cur->_key, curRL->_key);
- //判断要删除的节点在其父节点的位置
- //操控父节点指针
- //有一个性质:右子树中的最左节点一定没有左子树,我们让父节点连接要删除节点的右子树就行
- if (curRL == parentRL->_cleft)
- parentRL->_cleft = curRL->_cright;
- else
- parentRL->_cright = curRL->_cright;
- delete curRL;
- curRL = nullptr;
- }
- return true;
- }
- }
-
- void InOrder()
- {
- _InOrder(_root);
- }
- private:
- void _InOrder(const Node* root)
- {
- if (root == nullptr)
- return;
-
- _InOrder(root->_cleft);
- cout << root->_key << ' ';
- _InOrder(root->_cright);
- }
- Node* _root;
- };
- }
- template<class K>
- struct SBTreeNode
- {
- public:
- //这里直接用匿名对象作为缺省参数
- SBTreeNode(const K& key = K())
- :_key(key)
- , _cleft(nullptr)
- , _cright(nullptr)
- {}
- public:
- K _key;
- SBTreeNode* _cleft;
- SBTreeNode* _cright;
- };
首先将节点类类型重定义为Node方便我们后续的使用
成员函数为插入、删除、查找、中序遍历
私有成员为节点指针_root
- template<class K>
- class SBTree
- {
- typedef SBTreeNode<K> Node;
- public:
- SBTree()
- :_root(nullptr)
- {}
-
- bool Insert(const K& key)
- {
- if (_root == nullptr)
- _root = new Node(key);
- else
- {
- Node* cur = _root;
- Node* parent = nullptr;
- //找到要插入的位置
- while (cur)
- {
- parent = cur;
- if (cur->_key < key)
- cur = cur->_cright;
- else if (cur->_key > key)
- cur = cur->_cleft;
- else
- return false;
- }
-
- //连接
- cur = new Node(key);
- if (parent->_key < key)
- parent->_cright = cur;
- else
- parent->_cleft = cur;
- }
- return true;
- }
-
- Node* Find(const K& key)
- {
- Node* cur = _root;
- while (cur)
- {
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- else
- break;
- }
- return cur;
- }
-
- bool Erase(const K& key)
- {
- if (_root == nullptr)
- return false;
- else
- {
- //找出要删除元素的位置,复用查找函数也行
- Node* cur = _root;
- Node* parent = nullptr;
- while (cur)
- {
- if (cur->_key == key)
- break;
-
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- //对根进行特判
- if (parent == nullptr)
- {
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- delete _root;
- _root = nullptr;
- }
- else if (cur->_cleft == nullptr)
- _root = _root->_cright;
- else
- _root = _root->_cleft;
-
- return true;
- }
-
- //对不同情况进行处理
- //第一种是要删除的元素不在树内
- if (cur == nullptr)
- return false;
- else if (cur->_cleft == nullptr && cur->_cleft == cur->_cright)
- {
- //要删除的元素是叶子节点,直接删
- if (cur == parent->_cleft)
- parent->_cleft = nullptr;
- else
- parent->_cright = nullptr;
-
- delete cur;
- }
- else if (cur->_cleft == nullptr)
- {
- //有右子树但没有左子树
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cright;
- else
- parent->_cright = cur->_cright;
-
- delete cur;
- }
- else if (cur->_cright == nullptr)
- {
- //有左子树但没有右子树
- if (cur == parent->_cleft)
- {
- parent->_cleft = cur->_cleft;
- }
- else
- {
- parent->_cright = cur->_cleft;
- }
- delete cur;
- }
- else
- {
- //既有左子树又有右子树
- //找左子树的最右,或者找右子树的最左节点来替换掉当前要删除的节点
- Node* curRL = cur->_cright;
- Node* parentRL = cur;
- while (curRL->_cleft)
- {
- parentRL = curRL;
- curRL = curRL->_cleft;
- }
- //交换要删除的值和要删除节点的右树最左节点的值
- swap(cur->_key, curRL->_key);
- //判断要删除的节点在其父节点的位置
- //操控父节点指针
- //有一个性质:右子树中的最左节点一定没有左子树,我们让父节点连接要删除节点的右子树就行
- if (curRL == parentRL->_cleft)
- parentRL->_cleft = curRL->_cright;
- else
- parentRL->_cright = curRL->_cright;
- delete curRL;
- curRL = nullptr;
- }
- return true;
- }
- }
-
- void InOrder()
- {
- _InOrder(_root);
- }
- private:
- void _InOrder(const Node* root)
- {
- if (root == nullptr)
- return;
-
- _InOrder(root->_cleft);
- cout << root->_key << ' ';
- _InOrder(root->_cright);
- }
- Node* _root;
- };
将_root指针初始化为空指针即可
- SBTree()
- :_root(nullptr)
- {}
Insert函数的参数为要插入的关键字
首先进行判空,如果_root为空,说明此时还没有节点,我们直接给_root赋值就行
如果不为空,那么就需要先找到要插入的位置,我们定义cur和parent两个节点指针,cur负责寻找要插入的位置,parent负责记录cur的父亲节点,由于搜索二叉树的特性,当key值大于cur所指向节点的_key值说明要插入的位置再cur节点的右子树中,反之则在cur的左子树中,通过循环来达到目的,更新cur的同时要更新parent
如果遇到cur的_key和key相等的情况说明插入失败,其余情况皆为插入成功
- bool Insert(const K& key)
- {
- if (_root == nullptr)
- _root = new Node(key);
- else
- {
- Node* cur = _root;
- Node* parent = nullptr;
- //找到要插入的位置
- while (cur)
- {
- if (cur->_key == key)
- return false;
-
- parent = cur;
- if (cur->_key < key)
- cur = cur->_cright;
- else if (cur->_key > key)
- cur = cur->_cleft;
- }
-
- //连接
- cur = new Node(key);
- if (parent->_key < key)
- parent->_cright = cur;
- else
- parent->_cleft = cur;
- }
- return true;
- }
Find的参数为要查找的关键字
我们定义cur指针来找到目标节点位置,当key > cur->_key时cur要往其右子树寻找,反之则去其左子树寻找,当相等时或者cur指向空(意味着没找到)结束循环,返回cur
- Node* Find(const K& key)
- {
- Node* cur = _root;
- while (cur)
- {
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- else
- break;
- }
- return cur;
- }
-
-
该函数的参数为要删除的关键字
当要操作的树为空树时,直接返回失败
不是空树则首先找出要删除节点的位置,同样是定义cur和parent节点指针,cur负责找出要删除节点的位置,parent负责记录cur节点的父节点。利用循环结构实现,循环的结束条件为cur为空指针或者找到对应位置,若为空则说明要删除节点不在树内,直接返回失败
找到之后首先判断是否要操作_root指针,当parent为空时说明要操作根节点,对于根节点的不同类型进行对应的操作1. 如果整棵树只有一个节点,直接删除根节点,并将根节点置为空。2. 如果根节点没有左子树,则用右子树的根节点作为新的整棵树的根节点。3. 如果根节点没有右子树,则用左子树的根节点作为新的整棵树的根节点。4. 如果根节点既有左子树又有右子树,则当作普通节点处理(见下一点的第4小点)
处理完根节点问题后就改判断要删除的节点是哪种类型:1. 删除节点是叶子结点,那么我们直接删除该节点并更新其父亲节点的指针(判断要删除节点是其父情节点的左子树还是右子树,操作对应的指针)2. 有右子树但没有左子树,让其父亲的对应指针指向其右子树,并删除当前节点。3. 有左子树但没有右子树,让其父亲的对应指针指向其左子树,并删除该节点4. 既有左子树又有右子树,定义curRL负责寻找其右子树的最左节点(也就是右子树的最小节点)或者定义curLR左子树的最右节点(也就是左子树的最大节点),定义parentRL记录其父亲节点,与当前节点(cur)的值进行交换,交换完后令parentRL的对应指针指向curRL的右子树,并删除curRL所指向的节点。
所有过程走完后返回状态(成功或者失败)
- bool Erase(const K& key)
- {
- if (_root == nullptr)
- return false;
- else
- {
- //找出要删除元素的位置,复用查找函数也行
- Node* cur = _root;
- Node* parent = nullptr;
- while (cur)
- {
- if (cur->_key == key)
- break;
-
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- //对根进行特判
- if (parent == nullptr)
- {
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- delete _root;
- _root = nullptr;
- }
- else if (cur->_cleft == nullptr)
- _root = _root->_cright;
- else
- _root = _root->_cleft;
-
- return true;
- }
-
- //对不同情况进行处理
- //第一种是要删除的元素不在树内
- if (cur == nullptr)
- return false;
- else if (cur->_cleft == nullptr && cur->_cleft == cur->_cright)
- {
- //要删除的元素是叶子节点,直接删
- if (cur == parent->_cleft)
- parent->_cleft = nullptr;
- else
- parent->_cright = nullptr;
-
- delete cur;
- }
- else if (cur->_cleft == nullptr)
- {
- //有右子树但没有左子树
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cright;
- else
- parent->_cright = cur->_cright;
-
- delete cur;
- }
- else if (cur->_cright == nullptr)
- {
- //有左子树但没有右子树
- if (cur == parent->_cleft)
- {
- parent->_cleft = cur->_cleft;
- }
- else
- {
- parent->_cright = cur->_cleft;
- }
- delete cur;
- }
- else
- {
- //既有左子树又有右子树
- //找左子树的最右,或者找右子树的最左节点来替换掉当前要删除的节点
- Node* curRL = cur->_cright;
- Node* parentRL = cur;
- while (curRL->_cleft)
- {
- parentRL = curRL;
- curRL = curRL->_cleft;
- }
- //交换要删除的值和要删除节点的右树最左节点的值
- swap(cur->_key, curRL->_key);
- //判断要删除的节点在其父节点的位置
- //操控父节点指针
- //有一个性质:右子树中的最左节点一定没有左子树,我们让父节点连接要删除节点的右子树就行
- if (curRL == parentRL->_cleft)
- parentRL->_cleft = curRL->_cright;
- else
- parentRL->_cright = curRL->_cright;
- delete curRL;
- curRL = nullptr;
- }
- return true;
- }
- }
- #pragma once
- namespace hqj2
- {
- template<class K, class V>
- struct SBTreeNode
- {
- public:
- SBTreeNode(const K& key = K(), const V& value = V())
- :_cleft(nullptr), _cright(nullptr)
- , _key(key)
- , _value(value)
- {}
- public:
- SBTreeNode* _cleft;
- SBTreeNode* _cright;
- K _key;
- V _value;
- };
-
- template<class K, class V>
- class SBTree
- {
- typedef SBTreeNode<K, V> Node;
- public:
- SBTree()
- :_root(nullptr)
- {}
- public:
- bool Insert(const K& key, const V& value)
- {
- if (_root == nullptr)
- _root = new Node(key, value);
- else
- {
- Node* cur = _root;
- Node* parent = nullptr;
-
- while (cur)
- {
- if (cur->_key == key)
- return false;
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- cur = new Node(key, value);
- if (cur == parent->_cleft)
- parent->_cleft = cur;
- else
- parent->_cright = cur;
- }
- return true;
- }
-
- void InOrder()
- {
- _Inorder(_root);
- }
-
- Node*& Find(const K& key)
- {
- Node* cur = _root;
-
- while (cur)
- {
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- else
- break;
- }
-
- return cur;
- }
-
- bool Erase(const K& key)
- {
- if (_root == nullptr)
- return false;
-
- Node* cur = _root;
- Node* parent = nullptr;
-
- while (cur)
- {
- if (cur->_key == key)
- break;
-
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- if (parent == nullptr)
- {
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- delete _root;
- _root = nullptr;
- }
- else if (cur->_cleft == nullptr)
- _root = _root->_cright;
- else
- _root = _root->_cleft;
- return true;
- }
-
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = nullptr;
- else
- parent->_cright = nullptr;
-
- delete cur;
- }
- else if (cur->_cleft == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cright;
- else
- parent->_cright = cur->_cright;
-
- delete cur;
- }
- else if (cur->_cright == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cleft;
- else
- parent->_cright = cur->_cleft;
- }
- else
- {
- Node* parntRL = nullptr;
- Node* curRL = cur->_cright;
-
- while (curRL->_cleft != nullptr)
- {
- parntRL = curRL;
- curRL = curRL->_cleft;
- }
-
- swap(curRL->_key, cur->_key);
-
- if (curRL == parntRL->_cleft)
- parntRL->_cleft = curRL->_cright;
- else
- parntRL->_cright = curRL->_cright;
- delete curRL;
- }
- return true;
- }
- private:
- void _Inorder(const Node* root)
- {
- if (root == nullptr)
- return;
- _Inorder(root->_cleft);
- cout << root->_key << ' ' << root->_value << ' ' << endl;
- _Inorder(root->_cright);
- }
-
- Node* _root;
- };
- }
是模板类,模板参数是K和V
成员函数和k模型一模一样
- template<class K, class V>
- class SBTree
- {
- typedef SBTreeNode<K, V> Node;
- public:
- SBTree()
- :_root(nullptr)
- {}
- public:
- bool Insert(const K& key, const V& value)
- {
- if (_root == nullptr)
- _root = new Node(key, value);
- else
- {
- Node* cur = _root;
- Node* parent = nullptr;
-
- while (cur)
- {
- if (cur->_key == key)
- return false;
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- cur = new Node(key, value);
- if (cur == parent->_cleft)
- parent->_cleft = cur;
- else
- parent->_cright = cur;
- }
- return true;
- }
-
- void InOrder()
- {
- _Inorder(_root);
- }
-
- Node*& Find(const K& key)
- {
- Node* cur = _root;
-
- while (cur)
- {
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- else
- break;
- }
-
- return cur;
- }
-
- bool Erase(const K& key)
- {
- if (_root == nullptr)
- return false;
-
- Node* cur = _root;
- Node* parent = nullptr;
-
- while (cur)
- {
- if (cur->_key == key)
- break;
-
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- if (parent == nullptr)
- {
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- delete _root;
- _root = nullptr;
- }
- else if (cur->_cleft == nullptr)
- _root = _root->_cright;
- else
- _root = _root->_cleft;
- return true;
- }
-
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = nullptr;
- else
- parent->_cright = nullptr;
-
- delete cur;
- }
- else if (cur->_cleft == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cright;
- else
- parent->_cright = cur->_cright;
-
- delete cur;
- }
- else if (cur->_cright == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cleft;
- else
- parent->_cright = cur->_cleft;
- }
- else
- {
- Node* parntRL = nullptr;
- Node* curRL = cur->_cright;
-
- while (curRL->_cleft != nullptr)
- {
- parntRL = curRL;
- curRL = curRL->_cleft;
- }
-
- swap(curRL->_key, cur->_key);
-
- if (curRL == parntRL->_cleft)
- parntRL->_cleft = curRL->_cright;
- else
- parntRL->_cright = curRL->_cright;
- delete curRL;
- }
- return true;
- }
- private:
- void _Inorder(const Node* root)
- {
- if (root == nullptr)
- return;
- _Inorder(root->_cleft);
- cout << root->_key << ' ' << root->_value << ' ' << endl;
- _Inorder(root->_cright);
- }
-
- Node* _root;
- };
节点是模板类,模板参数为K和V
成员为左子树指针、右子树指针、关键字、所对应的值
依然以匿名对象作为缺省参数,使得我们程序更加通用
- template<class K, class V>
- struct SBTreeNode
- {
- public:
- SBTreeNode(const K& key = K(), const V& value = V())
- :_cleft(nullptr), _cright(nullptr)
- , _key(key)
- , _value(value)
- {}
- public:
- SBTreeNode* _cleft;
- SBTreeNode* _cright;
- K _key;
- V _value;
- };
该函数参数为关键字、值
首先判断该树有无节点,无节点则直接给_root赋值,有节点则先找要插入的位置,插入的同时改变其父亲节点所对应的指针
返回值为插入状态
- bool Insert(const K& key, const V& value)
- {
- if (_root == nullptr)
- _root = new Node(key, value);
- else
- {
- Node* cur = _root;
- Node* parent = nullptr;
-
- while (cur)
- {
- if (cur->_key == key)
- return false;
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- cur = new Node(key, value);
- if (cur == parent->_cleft)
- parent->_cleft = cur;
- else
- parent->_cright = cur;
- }
- return true;
- }
和k模型的一模一样,不做赘述
- Node*& Find(const K& key)
- {
- Node* cur = _root;
-
- while (cur)
- {
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- else
- break;
- }
-
- return cur;
- }
和k模型的一模一样,不做赘述
- bool Erase(const K& key)
- {
- if (_root == nullptr)
- return false;
-
- Node* cur = _root;
- Node* parent = nullptr;
-
- while (cur)
- {
- if (cur->_key == key)
- break;
-
- parent = cur;
- if (key > cur->_key)
- cur = cur->_cright;
- else if (key < cur->_key)
- cur = cur->_cleft;
- }
-
- if (parent == nullptr)
- {
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- delete _root;
- _root = nullptr;
- }
- else if (cur->_cleft == nullptr)
- _root = _root->_cright;
- else
- _root = _root->_cleft;
- return true;
- }
-
- if (cur->_cleft == nullptr && cur->_cright == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = nullptr;
- else
- parent->_cright = nullptr;
-
- delete cur;
- }
- else if (cur->_cleft == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cright;
- else
- parent->_cright = cur->_cright;
-
- delete cur;
- }
- else if (cur->_cright == nullptr)
- {
- if (cur == parent->_cleft)
- parent->_cleft = cur->_cleft;
- else
- parent->_cright = cur->_cleft;
- }
- else
- {
- Node* parntRL = nullptr;
- Node* curRL = cur->_cright;
-
- while (curRL->_cleft != nullptr)
- {
- parntRL = curRL;
- curRL = curRL->_cleft;
- }
-
- swap(curRL->_key, cur->_key);
-
- if (curRL == parntRL->_cleft)
- parntRL->_cleft = curRL->_cright;
- else
- parntRL->_cright = curRL->_cright;
- delete curRL;
- }
- return true;
- }