• Rust2 Common Programming Concepts & Understanding Ownership


    Rust学习笔记

    Rust编程语言入门教程课程笔记

    参考教材: The Rust Programming Language (by Steve Klabnik and Carol Nichols, with contributions from the Rust Community)

    Lecture 3 Common Programming Concepts

    fn main() {
        // Variables and Mutability
        let mut x = 5; // mut means mutable
        println!("The value of x is: {x}");
        x = 6;
        println!("The value of x is: {x}");
    
        // Constants
        const THREE_HOURS_IN_SECONDS: u32 = 60 * 60 * 3; // all caps with underscores
        println!("The value of THREE_HOURS_IN_SECONDS is: {THREE_HOURS_IN_SECONDS}");
        // Shadowing
        let y = 5;
        println!("The value of y is: {y}");
        let y = y + 1; //shadowing
        // this is allowed because we are creating a new variable
        println!("The value of y is: {y}");
    
        // Shadowing vs Mutability
        let spaces = "   ";
        let spaces = spaces.len(); // this is allowed because we are creating a new variable
        println!("The value of spaces is: {spaces}");
    
        // Data Types
        let guess: u32 = "42".parse().expect("Not a number!"); // type annotation
        println!("The value of guess is: {guess}");
        let m = 57u8; // u8
        println!("The value of m is: {m}");
        let n = 1_000_000; // i32
        println!("The value of n is: {n}");
        let x = 2.0; // f64
        let y: f32 = 3.0; // f32
        println!("The value of x is: {x}");
        println!("The value of y is: {y}");
        // addition
        let sum = 5 + 10;
        println!("The value of sum is: {sum}");
        // subtraction
        let difference = 95.5 - 4.3;
        println!("The value of difference is: {difference}");
        // multiplication
        let product = 4 * 30;
        println!("The value of product is: {product}");
        // division
        let quotient = 56.7 / 32.2;
        let truncated = -5 / 3; // Results in -1
        println!("The value of quotient is: {quotient}");
        println!("The value of truncated is: {truncated}");
        // remainder
        let remainder = 43 % 5;
        println!("The value of remainder is: {remainder}");
        // boolean
        let t = true;
        let f: bool = false; // with explicit type annotation
        println!("The value of t is: {t}");
        println!("The value of f is: {f}");
        // character
        let c = 'z';
        let z: char = 'ℤ'; // with explicit type annotation
        let heart_eyed_cat = '😻';
        println!("The value of c is: {c}");
        println!("The value of z is: {z}");
        println!("The value of heart_eyed_cat is: {heart_eyed_cat}");
    
        // Compound Types
    
        // Tuple
        let tup: (i32, f64, u8) = (500, 6.4, 1); // type annotation
        println!("The value of tup is: {:?}", tup);
        let (x, y, z) = tup; // destructuring
        println!("The value of x is: {x}");
        println!("The value of y is: {y}");
        println!("The value of z is: {z}");
        let five_hundred = tup.0; // accessing tuple elements
        println!("The value of five_hundred is: {five_hundred}");
        let six_point_four = tup.1;
        println!("The value of six_point_four is: {six_point_four}");
        let one = tup.2;
        println!("The value of one is: {one}");
    
        //Array 
        //saved on stack
        // fixed length and same type
        let a = [1, 2, 3, 4, 5]; // array
        println!("The value of a is: {:?}", a);
        let a = [3; 5]; // [3, 3, 3, 3, 3] // [element; size]
        let first = a[0];
        let second = a[1];
        println!("The value of first is: {first}");
        println!("The value of second is: {second}");
    
        // Functions
        another_function(5);
    
        println!("The value of add_five(10) is: {}", add_five(10));
    
        // Control Flow
    
        // if-else flow
        let number = 6;
        if number % 4 == 0 {
            println!("number is divisible by 4");
        } else if number % 3 == 0 {
            println!("number is divisible by 3");
        } else if number % 2 == 0 {
            println!("number is divisible by 2");
        } else {
            println!("number is not divisible by 4, 3, or 2");
        }
    
        let condition = true;
        let number = if condition { 5 } else { 6 };
        println!("The value of number is: {number}");
    
        // loop flow
        let mut counter = 0;
        let result = loop {
            counter += 1;
            if counter == 10 {
                break counter * 2; // break with value
            }// no semicolon here
        };// semicolon here
        println!("The value of result is: {result}");
    
        // while flow
        let mut number = 3;
        while number != 0 {
            println!("{}!", number);
            number -= 1;
        }// no semicolon here
        println!("LIFTOFF!!!");
    
        // for flow
        let a = [10, 20, 30, 40, 50];   
        for element in a.iter() {// iter() returns each element in a collection
            println!("the value is: {element}");
        }// no semicolon here
    
        for number in 1..4 {// range [1, 4) = [1, 2, 3]
            println!("{}!", number);
        }
    
        for number in (1..4).rev() {// reverse 
            println!("{}!", number);
        }
    
        
    }
    
    fn another_function(x: i32) {// type annotation
        println!("Another function.");
        println!("The value of x is: {x}");
    }
    
    fn add_five(x: i32) -> i32 {
        5 + x // no semicolon means return
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157

    Lecture 4 Understanding Ownership

    fn main() {
        //Ownership is a set of rules that govern how a Rust program manages memory.
        //These rules are checked at compile time.
        //Ownership is Rust's most unique feature, and it enables Rust to make memory safety guarantees without needing a garbage collector.
        //All programs have to manage the way they use a computer's memory while running.
    
        //Stack and Heap
        //All data stored on the stack must have a known, fixed size. 
        //Data with an unknown size at compile time or a size that might change must be stored on the heap instead.
        //The main purpose of ownership is to manage heap data.
    
        //Ownership Rules
        //1. Each value in Rust has a variable that’s called its owner.
        //2. There can only be one owner at a time.
        //3. When the owner goes out of scope, the value will be dropped.
    
        //Variable Scope
        let mut s = String::from("hello");//The String type is allocated on the heap.
        s.push_str(", world!"); // push_str() appends a literal to a String
        println!("{}", s); // This will print `hello, world!`
    
        //Memory and Allocation
    
        //With the String type, in order to support a mutable, growable piece of text, we need to allocate an amount of memory on the heap, unknown at compile time, to hold the contents. This means:
        //1. The memory must be requested from the memory allocator at runtime.
        //2. We need a way of returning this memory to the allocator when we’re done with our String.
    
        //Rust takes a different path: 
        //the memory is automatically returned once the variable that owns it goes out of scope.
    
        //Move
        let x = 5;
        let y = x; //Stack-Only Data: Copy
        println!("x = {}, y = {}", x, y);//This works because integers are simple values with a known, fixed size, and these two 5 values are pushed onto the stack.
    
        let s1 = String::from("hello");
        let s2 = s1;
        //println!("{}, world!", s1);//This will throw an error because Rust considers s1 to no longer be valid and, therefore, Rust doesn’t need to free anything when s1 goes out of scope.
        println!("{}, world!", s2);//This will work because s2 is the new owner of the String data.
        
        //Clone
        let s1 = String::from("hello");
        let s2 = s1.clone();
        println!("s1 = {}, s2 = {}", s1, s2);//This will work because s1.clone() creates a deep copy of the String data, not just a copy of the stack pointer.
    
        //Ownership and Functions
        let s = String::from("hello");  // s comes into scope.
        takes_ownership(s);             // s's value moves into the function...
                                        // ... and so is no longer valid here.
        let x = 5;                      // x comes into scope.
        makes_copy(x);                  // x would move into the function,
                                        // but i32 is Copy, so it’s okay to still
                                        // use x afterward.
        //println!("{}", s);//This will throw an error because s is no longer valid.
        println!("{}", x);//This will work because x is still valid.
    
        //Return Values and Scope
        let s1 = gives_ownership();         // gives_ownership moves its return
                                            // value into s1.
        let s2 = String::from("hello");     // s2 comes into scope.
        let s3 = takes_and_gives_back(s2);  // s2 is moved into
                                            // takes_and_gives_back, which also
                                            // moves its return value into s3.
        println!("s1 = {}, s3 = {}", s1, s3);//Here, s3 goes out of scope and is dropped. s2 goes out of scope but was moved, so nothing happens. s1 goes out of scope and is dropped.
        //println!("{}", s2);//This will throw an error because s2 is no longer valid.
    
        //References and Borrowing
        let s1 = String::from("hello");
        let len = calculate_length(&s1);//The &s1 syntax lets us create a reference that refers to the value of s1 but does not own it.
        println!("The length of '{}' is {}.", s1, len);//This will work because s1 is still valid.
    
        //Mutable References
        let mut s = String::from("hello");
        change(&mut s);//We can have only one mutable reference to a particular piece of data in a particular scope.
        println!("{}", s);//This will work because s is still valid.
    
        let mut s = String::from("hello");
    
        let r1 = &mut s;
        //let r2 = &mut s;//This will throw an error because we can have only one mutable reference to a particular piece of data in a particular scope.
    
        //println!("{}, {}", r1, r2);
        println!("{}", r1);
    
        let mut s = String::from("hello");
    
        {
            let r1 = &mut s;
            println!("{}", r1);
        } // r1 goes out of scope here, so we can make a new reference with no problems.
    
        let r2 = &mut s;
        println!("{}", r2);
    
        let s = String::from("hello");
    
        let r1 = &s; // no problem
        let r2 = &s; // no problem
        //let r3 = &mut s; // BIG PROBLEM //This will throw an error because we can have either one mutable reference or any number of immutable references.
    
        println!("{}, {}", r1, r2);
    
        //Note that a reference’s scope starts from where it is introduced and continues through the last time that reference is used.
        let mut s = String::from("hello");
    
        let r1 = &s; // no problem
        let r2 = &s; // no problem
        println!("{} and {}", r1, r2);
        // variables r1 and r2 will not be used after this point
    
        let r3 = &mut s; // no problem
        println!("{}", r3);
    
        //Dangling References
        let reference_to_nothing = dangle();
        println!("{}", reference_to_nothing);
    
        //The Rules of References
        //1. At any given time, you can have either one mutable reference or any number of immutable references.
        //2. References must always be valid.
    
        //The Slice Type
        //Slices let you reference a contiguous sequence of elements in a collection rather than the whole collection. A slice is a kind of reference, so it does not have ownership.
    
        //Find the first word in a string
        let s = String::from("hello world");
        //let wordIndex = first_word(&s);
        let first = first_word(&s);
        //s.clear();//This will throw an error because we have an immutable reference to s.
        println!("the first word is: {}", first);
    
        let hello = &s[..5]; //[starting_index..ending_index) = [0..5) = [0, 1, 2, 3, 4]
        let world = &s[6..]; //[starting_index..ending_index) = [6..11) = [6, 7, 8, 9, 10]
        println!("{} {}", hello, world);
    
        //Other Slices
        let a = [1, 2, 3, 4, 5];
        let slice = &a[1..3];//[starting_index..ending_index) = [1..3) = [1, 2]
        assert_eq!(slice, &[2, 3]);//The assert_eq! macro tests whether two expressions are equal to each other; if they are, nothing happens, and if they aren’t, the macro prints the two expressions and panics.
        
    }   
    
    fn takes_ownership(some_string: String) { // some_string comes into scope.
        println!("{}", some_string);
    } // Here, some_string goes out of scope and `drop` is called. The backing memory is freed.
    
    fn makes_copy(some_integer: i32) { // some_integer comes into scope.
        println!("{}", some_integer);
    } // Here, some_integer goes out of scope. Nothing special happens.
    
    fn gives_ownership() -> String {             // gives_ownership will move its
                                                // return value into the function
                                                // that calls it.
        let some_string = String::from("hello"); // some_string comes into scope.
        some_string                             // some_string is returned and
                                                // moves out to the calling
                                                // function.
    }
    
    fn takes_and_gives_back(a_string: String) -> String { // a_string comes into
                                                            // scope.
        a_string  // a_string is returned and moves out to the calling function.
    }
    
    fn calculate_length(s: &String) -> usize {//We call having references as function parameters borrowing.
        s.len()
    }//Here, s goes out of scope. But because it does not have ownership of what it refers to, nothing happens.
    
    fn change(some_string: &mut String) {
        some_string.push_str(", world");
    }
    
    // fn dangle() -> &String { //This will throw an error because we are trying to return a reference to a String that is created inside the function.
    //     let s = String::from("hello");
    //     &s
    // }//Here, s goes out of scope, and is dropped. Its memory goes away. Danger!
    
    fn dangle() -> String {
        let s = String::from("hello");
        s
    }
    
    // fn first_word(s: &String) -> usize {
    //     let bytes = s.as_bytes();
    
    //     for (i, &item) in bytes.iter().enumerate() {
    //         if item == b' ' {
    //             return i;
    //         }
    //     }
    
    //     s.len()
    // }
    
    fn first_word(s: &String) -> &str {//We can use &str as the type of the slice parameter to make it clear that the keys function will return slices of String values rather than whole String values.
        let bytes = s.as_bytes();
    
        for (i, &item) in bytes.iter().enumerate() {//The enumerate method returns a tuple consisting of the index and the reference to the element.
            if item == b' ' {
                return &s[0..i];
            }
        }
    
        &s[..]
    }
    
    //1. fn first_word(s: &String) -> &str
    //2. fn first_word(s: &str) -> &str
    //A more experienced Rustacean would write the signature shown in type 2 instead because it allows us to use the same function on both &String values and &str values.
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
  • 相关阅读:
    智能网联汽车 自动驾驶地图数据质量规范
    Seata
    Pytorch 图像增强 实现翻转裁剪色调等 附代码(全)
    文旅媒体有哪些?如何邀请到现场报道?
    水库大坝安全监测预警系统的重要作用
    【SpringBoot】开启accesslog,使用undertow容器,解决%D接口不打印耗时
    Kotlin 开发Android app(十六):ContentProvider的使用
    电脑有机械硬盘和固态硬盘,如何切换系统启动盘?
    [vuex3罕见错误] rawModule is undefined
    编译和运行一个ARM64内核
  • 原文地址:https://blog.csdn.net/weixin_45347752/article/details/134234829