• 异步请求池——池式组件


    前言

      

      本文详细介绍异步请求池的实现过程,并使用DNS服务来测试异步请求池的性能。
      
      
      
      两个必须牢记心中的概念:

    • 同步:检测IO 与 读写IO 在同一个流程里
    • 异步:检测IO 与 读写IO 不在同一个流程

    同步请求 与 异步请求 的处理流程

    同步请求的处理流程
      我们知道,同步:检测IO 与 读写IO 在同一个流程里,那么就意味着,发送消息之后,需要等待返回结果,在结果没有返回之前都在阻塞等待,图中我们发了3次请求,很明显的看出,这三个请求是串行的。都串行了,怎么搞并发呀!下面来看看异步请求。

    同步请求 与 异步请求的 差异

      很明显,同步需要阻塞等待一个请求的完成,异步不需要。同步是一个线程处理所有请求,异步是两个线程。那么如果请1000个请求需要完成呢?必然不可能采用同步阻塞等待的方案,第1000个请求不得等睡着啊。

    设计异步请求池
    初步构思
      在第三方服务中,连接sockfd都是同步的,也就是说,在同步的流程上,一个连接,可以发多个请求,只不过需要阻塞等待上一条请求返回结果而已。

      而异步呢,异步的其中一个线程的任务必然是一直发送请求,那么必然是非阻塞的,那么我们设计一个请求对应一个fd。“池的概念就出来了”,在send之后,我们将fd加入到epoll中,而epoll_wait在哪呢?在另一个线程中,epoll所在的线程就一直检测epoll中是否有fd可读。

      说的通俗一点,一个请求send之后,将对应的fd加入到epoll里面,另一个线程在一直epoll_wait()读数据。

     

     四元组 init、commit、callback、destroy

    1. //init
    2. struct async_context *dns_async_client_init(void);
    3. //commit
    4. int dns_async_client_commit(struct async_context *ctx, const char *domain, async_result_cb cb);
    5. //pthread callback
    6. static void *dns_async_client_proc(void *arg);
    7. //destroy
    8. int dns_async_client_destroy(struct async_context *ctx);
    • init:初始化函数只做三件事
      1. 1.calloc()创建上下文结构体
      2. 2.epoll_create()创建一个epoll fd
      3. 3.pthread_create()创建一个新线程。

    • commit:commit函数就是发送请求,它做五件事
      1. 1.socket 创建socket
      2. 2.connect连接到第三方服务
      3. 3.encode--->mysql/redis/dns 根据对应的协议将发送的数据封装好
      4. 4.send将数据发送出去
      5. 5.epoll_ctl(ctx->epfd, EPOLL_CTL_ADD, sockfd, &ev);把fd加入到epoll中

    • pthread callback:创建线程时需要给他传递一个回调函数,它做下面伪代码的事情
      1. while(1){
      2. nready=epoll_wait()
      3. for(){
      4. recv();
      5. parser();//解析协议
      6. epoll_ctl(epfd, EPOLL_CTL_DEL, sockfd, NULL);
      7. }
      8. }
    • destroy:init创建了什么就销毁什么
      1. 1.close(epfd);
      2. 2.pthread_cancel(thid);
      3. 3.free(ctx);

       应用协议DNS异步请求池实现

    1. 初始化请求池init

    • init:初始化函数只做两件事
    1. 1.calloc创建上下文结构体
    2. 2.epoll_create()创建一个epoll fd
    3. 3.pthread_create()创建一个新线程。
    1. struct async_context {
    2. int ep_fd;
    3. pthread_t thread_id;
    4. };
    5. //TODO init
    6. //1.malloc ctx;
    7. //2.epoll_create
    8. //3.pthread_create
    9. struct async_context *dns_async_client_init(void) {
    10. int epfd = epoll_create(1); //
    11. if (epfd < 0) return NULL;
    12. struct async_context *ctx = calloc(1, sizeof(struct async_context));
    13. if (ctx == NULL) {
    14. close(epfd);
    15. return NULL;
    16. }
    17. ctx->ep_fd = epfd;
    18. int ret = pthread_create(&ctx->thread_id, NULL, dns_async_client_proc, ctx);
    19. if (ret) {
    20. perror("pthread_create");
    21. return NULL;
    22. }
    23. usleep(1); //child go first
    24. return ctx;
    25. }

    2. 建立连接提交请求commit

    • commit:commit函数就是发送请求,它做五件事
    1. 1.socket 创建socket
    2. 2.connect连接到第三方服务
    3. 3.encode--->mysql/redis/dns 根据对应的协议将发送的数据封装好
    4. 4.send将数据发送出去
    5. 5.epoll_ctl(ctx->epfd, EPOLL_CTL_ADD, sockfd, &ev);把fd加入到epoll中

     注意这里有一个async_result_cb回调函数,它是负责对fd接收到第三方服务返回的数据之后的回调函数。

    1. //TODO commit
    2. //1.socket
    3. //2.connect
    4. //3.encode ---> redis/mysql/dns
    5. //4.send
    6. //5.epoll_ctl(ctx->ep_fd, EPOLL_CTL_ADD, sockfd, &ev);
    7. int dns_async_client_commit(struct async_context *ctx, const char *domain, async_result_cb cb) {
    8. //socket
    9. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    10. if (sockfd < 0) {
    11. perror("create socket failed\n");
    12. exit(-1);
    13. }
    14. printf("url:%s\n", domain);
    15. set_block(sockfd, 0); //nonblock
    16. struct sockaddr_in dest;
    17. bzero(&dest, sizeof(dest));
    18. dest.sin_family = AF_INET;
    19. dest.sin_port = htons(53);
    20. dest.sin_addr.s_addr = inet_addr(DNS_SVR);
    21. //connect
    22. connect(sockfd, (struct sockaddr *) &dest, sizeof(dest));
    23. //encode
    24. struct dns_header header = {0};
    25. dns_create_header(&header);
    26. struct dns_question question = {0};
    27. dns_create_question(&question, domain);
    28. char request[1024] = {0};
    29. int req_len = dns_build_request(&header, &question, request);
    30. //send
    31. sendto(sockfd, request, req_len, 0, (struct sockaddr *) &dest, sizeof(struct sockaddr));
    32. struct ep_arg *eparg = (struct ep_arg *) calloc(1, sizeof(struct ep_arg));
    33. if (eparg == NULL) return -1;
    34. eparg->sockfd = sockfd;
    35. eparg->cb = cb;
    36. struct epoll_event ev;
    37. ev.data.ptr = eparg;
    38. ev.events = EPOLLIN;
    39. //epoll_ctl
    40. int ret = epoll_ctl(ctx->ep_fd, EPOLL_CTL_ADD, sockfd, &ev);
    41. return ret;
    42. }

    3. epoll线程的回调函数callback

    • pthread callback:创建线程时需要给他传递一个回调函数,它做下面伪代码的事情
    1. while(1){
    2. nready=epoll_wait()
    3. for(){
    4. recv();
    5. parser();//解析协议
    6. epoll_ctl(epfd, EPOLL_CTL_DEL, sockfd, NULL);
    7. }
    8. }

    1. //TODO pthread callback
    2. /*
    3. while(1){
    4. epoll_wait();
    5. recv;
    6. parser();
    7. data callback();
    8. epoll_ctl(ep_fd, EPOLL_CTL_DEL, sockfd, NULL);
    9. free(date);
    10. }
    11. */
    12. static void *dns_async_client_proc(void *arg) {
    13. struct async_context *ctx = (struct async_context *) arg;
    14. int epfd = ctx->ep_fd;
    15. while (1) {
    16. struct epoll_event events[ASYNC_CLIENT_NUM] = {0};
    17. int nready = epoll_wait(epfd, events, ASYNC_CLIENT_NUM, -1);
    18. if (nready <= 0) {
    19. continue;
    20. }
    21. printf("nready:%d\n", nready);
    22. int i = 0;
    23. for (i = 0; i < nready; i++) {
    24. struct ep_arg *data = (struct ep_arg *) events[i].data.ptr;
    25. int sockfd = data->sockfd;
    26. char buffer[1024] = {0};
    27. struct sockaddr_in addr;
    28. size_t addr_len = sizeof(struct sockaddr_in);
    29. //recv
    30. recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *) &addr, (socklen_t *) &addr_len);
    31. //parse
    32. struct dns_item *domain_list = NULL;
    33. int count = dns_parse_response(buffer, &domain_list);
    34. //call cb
    35. data->cb(domain_list, count);
    36. //del
    37. epoll_ctl(epfd, EPOLL_CTL_DEL, sockfd, NULL);
    38. close(sockfd);
    39. //free
    40. dns_async_client_free_domains(domain_list, count);
    41. free(data);
    42. }
    43. }
    44. }

    4. 销毁请求池destroy

    • destroy:init创建了什么就销毁什么
    1. 1.close(epfd);
    2. 2.pthread_cancel(thid);
    3. 3.free(ctx);
    1. //TODO destroy
    2. //1.close(ep_fd)
    3. //2.pthread_cancel(ctx->thread_id);
    4. //3.free(ctx);
    5. int dns_async_client_destroy(struct async_context *ctx) {
    6. close(ctx->ep_fd);
    7. pthread_cancel(ctx->thread_id);
    8. free(ctx);
    9. return 0;
    10. }

    Demo完整代码

    DNS同步请求代码

    1. #include
    2. #include
    3. #include
    4. #include
    5. #include
    6. #include
    7. #include
    8. #include
    9. #include
    10. #include
    11. #define DNS_SVR "114.114.114.114"
    12. #define DNS_HOST 0x01
    13. #define DNS_CNAME 0x05
    14. // DNS报文头部
    15. struct dns_header {
    16. unsigned short id;
    17. unsigned short flags;
    18. unsigned short qdcount;
    19. unsigned short ancount;
    20. unsigned short nscount;
    21. unsigned short arcount;
    22. };
    23. // DNS报文正文
    24. struct dns_question {
    25. int length;
    26. unsigned short qtype;
    27. unsigned short qclass;
    28. char *qname;
    29. };
    30. // DNS服务器返回的ip信息
    31. struct dns_item {
    32. char *domain;
    33. char *ip;
    34. };
    35. // header填充与函数实现
    36. int dns_create_header(struct dns_header *header) {
    37. if (header == NULL) return -1;
    38. memset(header, 0, sizeof(struct dns_header));
    39. srandom(time(NULL));
    40. header->id = random();
    41. header->flags |= htons(0x0100);
    42. header->qdcount = htons(1);
    43. return 0;
    44. }
    45. // question填充与函数实现
    46. int dns_create_question(struct dns_question *question, const char *hostname) {
    47. if (question == NULL) return -1;
    48. memset(question, 0, sizeof(struct dns_question));
    49. question->qname = (char *) malloc(strlen(hostname) + 2);
    50. if (question->qname == NULL) return -2;
    51. question->length = strlen(hostname) + 2;
    52. question->qtype = htons(1);
    53. question->qclass = htons(1);
    54. const char delim[2] = ".";
    55. char *hostname_dup = strdup(hostname);
    56. char *token = strtok(hostname_dup, delim);
    57. char *qname_p = question->qname;
    58. while (token != NULL) {
    59. size_t len = strlen(token);
    60. *qname_p = len;
    61. qname_p++;
    62. strncpy(qname_p, token, len + 1);
    63. qname_p += len;
    64. token = strtok(NULL, delim);
    65. }
    66. free(hostname_dup);
    67. return 0;
    68. }
    69. // 对头部和问题区做一个打包
    70. int dns_build_request(struct dns_header *header, struct dns_question *question, char *request) {
    71. int header_s = sizeof(struct dns_header);
    72. int question_s = question->length + sizeof(question->qtype) + sizeof(question->qclass);
    73. int length = question_s + header_s;
    74. int offset = 0;
    75. memcpy(request + offset, header, sizeof(struct dns_header));
    76. offset += sizeof(struct dns_header);
    77. memcpy(request + offset, question->qname, question->length);
    78. offset += question->length;
    79. memcpy(request + offset, &question->qtype, sizeof(question->qtype));
    80. offset += sizeof(question->qtype);
    81. memcpy(request + offset, &question->qclass, sizeof(question->qclass));
    82. return length;
    83. }
    84. // 解析服务器发过来的数据
    85. static int is_pointer(int in) {
    86. return ((in & 0xC0) == 0xC0);
    87. }
    88. static void dns_parse_name(unsigned char *chunk, unsigned char *ptr, char *out, int *len) {
    89. int flag = 0, n = 0, alen = 0;
    90. char *pos = out + (*len);
    91. while (1) {
    92. flag = (int) ptr[0];
    93. if (flag == 0) break;
    94. if (is_pointer(flag)) {
    95. n = (int) ptr[1];
    96. ptr = chunk + n;
    97. dns_parse_name(chunk, ptr, out, len);
    98. break;
    99. }
    100. else {
    101. ptr++;
    102. memcpy(pos, ptr, flag);
    103. pos += flag;
    104. ptr += flag;
    105. *len += flag;
    106. if ((int) ptr[0] != 0) {
    107. memcpy(pos, ".", 1);
    108. pos += 1;
    109. (*len) += 1;
    110. }
    111. }
    112. }
    113. }
    114. //解析响应信息 buffer为response返回的信息
    115. static int dns_parse_response(char *buffer, struct dns_item **domains) {
    116. int i = 0;
    117. unsigned char *ptr = buffer;
    118. ptr += 4;
    119. int querys = ntohs(*(unsigned short *) ptr);
    120. ptr += 2;
    121. int answers = ntohs(*(unsigned short *) ptr);
    122. ptr += 6;
    123. for (i = 0; i < querys; i++) {
    124. while (1) {
    125. int flag = (int) ptr[0];
    126. ptr += (flag + 1);
    127. if (flag == 0) break;
    128. }
    129. ptr += 4;
    130. }
    131. char cname[128], aname[128], ip[20], netip[4];
    132. int len, type, ttl, datalen;
    133. int cnt = 0;
    134. struct dns_item *list = (struct dns_item *) calloc(answers, sizeof(struct dns_item));
    135. if (list == NULL) {
    136. return -1;
    137. }
    138. for (i = 0; i < answers; i++) {
    139. bzero(aname, sizeof(aname));
    140. len = 0;
    141. dns_parse_name(buffer, ptr, aname, &len);
    142. ptr += 2;
    143. type = htons(*(unsigned short *) ptr);
    144. ptr += 4;
    145. ttl = htons(*(unsigned short *) ptr);
    146. ptr += 4;
    147. datalen = ntohs(*(unsigned short *) ptr);
    148. ptr += 2;
    149. if (type == DNS_CNAME) {
    150. bzero(cname, sizeof(cname));
    151. len = 0;
    152. dns_parse_name(buffer, ptr, cname, &len);
    153. ptr += datalen;
    154. }
    155. else if (type == DNS_HOST) {
    156. bzero(ip, sizeof(ip));
    157. if (datalen == 4) {
    158. memcpy(netip, ptr, datalen);
    159. inet_ntop(AF_INET, netip, ip, sizeof(struct sockaddr));
    160. printf("%s has address %s\n", aname, ip);
    161. printf("\tTime to live: %d minutes , %d seconds\n", ttl / 60, ttl % 60);
    162. list[cnt].domain = (char *) calloc(strlen(aname) + 1, 1);
    163. memcpy(list[cnt].domain, aname, strlen(aname));
    164. list[cnt].ip = (char *) calloc(strlen(ip) + 1, 1);
    165. memcpy(list[cnt].ip, ip, strlen(ip));
    166. cnt++;
    167. }
    168. ptr += datalen;
    169. }
    170. }
    171. *domains = list;
    172. ptr += 2;
    173. return cnt;
    174. }
    175. int dns_client_commit(const char *domain) {
    176. int sockfd = socket(AF_INET, SOCK_DGRAM, 0);
    177. if (sockfd < 0) {
    178. perror("create socket failed\n");
    179. exit(-1);
    180. }
    181. printf("url:%s\n", domain);
    182. struct sockaddr_in dest;
    183. bzero(&dest, sizeof(dest));
    184. dest.sin_family = AF_INET;
    185. dest.sin_port = htons(53);
    186. dest.sin_addr.s_addr = inet_addr(DNS_SVR);
    187. int ret = connect(sockfd, (struct sockaddr *) &dest, sizeof(dest));
    188. printf("connect :%d\n", ret);
    189. struct dns_header header = {0};
    190. dns_create_header(&header);
    191. struct dns_question question = {0};
    192. dns_create_question(&question, domain);
    193. char request[1024] = {0};
    194. int req_len = dns_build_request(&header, &question, request);
    195. int slen = sendto(sockfd, request, req_len, 0, (struct sockaddr *) &dest, sizeof(struct sockaddr));
    196. char buffer[1024] = {0};
    197. struct sockaddr_in addr;
    198. size_t addr_len = sizeof(struct sockaddr_in);
    199. int n = recvfrom(sockfd, buffer, sizeof(buffer), 0, (struct sockaddr *) &addr, (socklen_t *) &addr_len);
    200. printf("recvfrom n : %d\n", n);
    201. struct dns_item *domains = NULL;
    202. dns_parse_response(buffer, &domains);
    203. return 0;
    204. }
    205. char *domain[] = {
    206. // "www.ntytcp.com",
    207. "bojing.wang",
    208. "www.baidu.com",
    209. "tieba.baidu.com",
    210. "news.baidu.com",
    211. "zhidao.baidu.com",
    212. "music.baidu.com",
    213. "image.baidu.com",
    214. "v.baidu.com",
    215. "map.baidu.com",
    216. "baijiahao.baidu.com",
    217. "xueshu.baidu.com",
    218. "cloud.baidu.com",
    219. "www.163.com",
    220. "open.163.com",
    221. "auto.163.com",
    222. "gov.163.com",
    223. "money.163.com",
    224. "sports.163.com",
    225. "tech.163.com",
    226. "edu.163.com",
    227. "www.taobao.com",
    228. "q.taobao.com",
    229. "sf.taobao.com",
    230. "yun.taobao.com",
    231. "baoxian.taobao.com",
    232. "www.tmall.com",
    233. "suning.tmall.com",
    234. "www.tencent.com",
    235. "www.qq.com",
    236. "www.aliyun.com",
    237. "www.ctrip.com",
    238. "hotels.ctrip.com",
    239. "hotels.ctrip.com",
    240. "vacations.ctrip.com",
    241. "flights.ctrip.com",
    242. "trains.ctrip.com",
    243. "bus.ctrip.com",
    244. "car.ctrip.com",
    245. "piao.ctrip.com",
    246. "tuan.ctrip.com",
    247. "you.ctrip.com",
    248. "g.ctrip.com",
    249. "lipin.ctrip.com",
    250. "ct.ctrip.com"
    251. };
    252. int main(int argc, char *argv[]) {
    253. int begin, end;
    254. begin = clock(); //计时开始
    255. int i;
    256. for (i = 0; i < sizeof(domain) / sizeof(domain[0]); i++) {
    257. dns_client_commit(domain[i]);
    258. }
    259. end = clock(); //计时结束
    260. getchar();
    261. printf("\n\nRunning Time:%lfs\n", (double)(end-begin)/CLOCKS_PER_SEC);
    262. }

    DNS异步请求代码

    DNS同步与异步的性能测试对比 

      这里就测试了44条域名,可以看到差距还是非常明显的。

     

    如果想用同步的编程方式去实现异步的性能,那么就需要用到协程的思想来进行改变这个异步请求池

    也就是我们异步请求池里的操作是,一个线程处理结果,另一个线程检测IO事件是否就绪,

    那么用协程的思想去操作的时候,那么就知道了,我们同步和异步的区别就是,发送请求

    等待结果,并处理结果,这里会等待,等待的原因是因为IO事件没有就绪,那么就可以用

    跳转,如果事件没有就绪,直接跳转,重新发送,并检测IO事件,往返多次,就达到了我

    们的异步的性能,主要是优化了等待资源就绪的时间!!!! 

  • 相关阅读:
    详解卡尔曼滤波原理
    RabbitMQ实践——搭建多人聊天服务
    超声功率放大器在MEMS超声测试中的应用
    rxjs Observable of 操作符的单步调试分析
    Mysql之聚合函数
    office365 outlook邮件无法删除
    Java中如何通过路径表达式找值:XPath和JsonPath以及SpEL详解及对比
    kafka(六):java API消费数据
    从模型到部署,教你如何用Python构建机器学习API服务
    数据分发服务 (DDS) 内置主题
  • 原文地址:https://blog.csdn.net/txh1873749380/article/details/134096146