• 哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测研究(Matlab代码实现)


     💥💥💞💞欢迎来到本博客❤️❤️💥💥

    🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

    ⛳️座右铭:行百里者,半于九十。

    📋📋📋本文目录如下:🎁🎁🎁

    目录

    💥1 概述

    📚2 运行结果

    🎉3 参考文献

    🌈4 Matlab代码及数据


    💥1 概述

    哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测是一种结合了哈里斯鹰算法和反向传播神经网络(BP神经网络)的方法,用于回归预测问题的研究。

    BP神经网络是一种常用的人工神经网络模型,通过反向传播算法来训练网络参数,从而实现对输入数据的回归预测。然而,传统的BP神经网络在训练过程中容易陷入局部最优解,导致预测精度不高。

    为了解决这个问题,研究者提出了使用哈里斯鹰算法来优化BP神经网络的方法。哈里斯鹰算法是一种新兴的优化算法,灵感来源于鹰群的觅食行为。该算法通过模拟鹰群中的竞争和合作关系,实现对搜索空间的全局优化。

    在HHO-BP方法中,首先使用BP神经网络对训练数据进行拟合,并得到初始的网络参数。然后,利用哈里斯鹰算法对网络参数进行优化,以寻找更优的参数组合。在优化过程中,哈里斯鹰算法通过模拟鹰群的搜索行为,不断更新网络参数,直到达到收敛条件。

    通过将哈里斯鹰算法和BP神经网络相结合,HHO-BP方法能够克服BP神经网络的局部最优解问题,提高回归预测的精度。实验证明,HHO-BP方法在回归预测问题上具有较好的性能,并且能够在较短的时间内找到全局最优解。

    哈里斯鹰算法优化BP神经网络(HHO-BP)回归预测是一种有效的方法,可以提高回归预测的准确性和效率。它可以在多个领域中应用,如金融预测、气象预测等。

    📚2 运行结果

    🎉3 参考文献

    文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。

    [1]李响,缪祥华,张如雪,等.利用哈里斯鹰算法优化卷积神经网络的入侵检测研究[J].化工自动化及仪表, 2023.

    [2]吴丁杰,温立书.一种基于哈里斯鹰算法改进的BP神经网络[J].网络安全技术与应用, 2022(001):000.

    🌈4 Matlab代码及数据

  • 相关阅读:
    第七章 块为结构建模 P5|系统建模语言SysML实用指南学习
    boom lab分析
    ESG,TO B长期主义里的「新战役」
    (Ljava/lang/String;)Ljava/lang/Integer; @65: areturn
    windos安装Mysql8.0,及解决重新登录异常问题 ERROR 1045 (28000)
    蓝桥杯练习题(3的倍数)
    (C++进阶)正则表达式
    腾讯云服务器mysql安装
    Toolbar控件 导航栏
    Ansible 面板工具之AWK ( Anssible Tower )界面介绍
  • 原文地址:https://blog.csdn.net/Ke_Yan_She/article/details/133840892