• gxhxjxizj


    (1) # coding: utf-8

      (2) import numpy as np

      (3) Adult_group = np.array([177, 169, 171, 171, 173, 175, 170, 173, 169, 172, 173, 175,

    179, 176, 166, 170, 167, 171, 171, 169])

      (4) Children_group = np.array([72, 76, 72, 70, 69, 76, 77, 72, 6 8, 74, 72, 70, 71, 73,

    75, 71, 72, 72, 71, 67])

      (5) print (u' 成人组标准差:%.2f 幼儿组标准差:%.2f'

      (6) % (np.std(Adult_group, ddof=1), np.std(Children_group, ddof=1)))

      (7) print (u' 成人组均值:%.2f 幼儿组均值:%.2f'

      (8) % (np.mean(Adult_group), np.mean(Children_group)))

      (9) print (u' 成人组离散系数:%.4f 幼儿组离散系数:

    %.4f' 
      (10)           % ((np.std(Adult_group, ddof=1) / np.mean(Adult_group), np.std(Children_ 
    group, ddof=1) / np.mean(Children_group)))) 

     

     

     

    (1) # coding: utf-8

      (2) import numpy as np

      (3) import matplotlib.pyplot as plt

      (4) import scipy.stats as sts

      (5) plt.rcParams['font.sans-serif']=['SimHei']

      (6) plt.rcParams['axes.unicode_minus']=False

      (7) samples = np.around(np.random.normal(loc=0.0, scale=1.0, size=580000),2)

      (8) plt.figure(num=1,dpi=300)

      (9) plt.ylabel(u' 频数', size=14)

      (10) plt.hist(samples, bins=1300, range=(-5,5))

      (11) n_mean=np.round(np.mean(samples),2)

      (12) n_median=np.round(np.median(samples),2)

      (13) n_mode=sts.mode(samples)

      (14) n_Skewness,n_kurtosis=sts.describe(samples)[4:]

      (15) plt.text(-5,2100,u'均值:%.2f;中位数:%.2f; 众数:%.2f' %(n_mean, n_median, n_mode.mode) ,

    size=8)

      (16) plt.text(-5,2000,u'偏度:%.4f; 峰度:%.4f' %(n_Skewness,n_kurtosis), size=8)

    (17) plt.show()

     

     

    (1) import numpy as np

      (2) import matplotlib

      (3) import matplotlib.pyplot as plt

      (4) np.random.seed(1)

      (5) x = np.random.randint(0, 100, 50)

      (6) y1 = 0.8*x + np.random.normal(0, 15, 50)

      (7) y2 = 100 - 0.7*x + np.random.normal(0, 15, 50)

      (8) y3 = np.random.randint(0, 100, 50)

      (9) r1=np.corrcoef(x, y1)

      (10) r2=np.corrcoef(x, y2)

      (11) r3=np.corrcoef(x, y3)

      (12) fig = plt.figure()

      (13) plt.subplot(131)

      (14) plt.scatter(x, y1,color='k')

      (15) plt.subplot(132)

      (16) plt.scatter(x, y2,color='k')

      (17) plt.subplot(133)

      (18) plt.scatter(x, y3,color='k')

      (19) print r1

      (20) print r2

      (21) print r3

      (22) plt.show()

     

     

     

  • 相关阅读:
    学会解决问题的方法
    【学习笔记】C++再入门过程-2
    OpenCV(opencv_apps)在ROS中的视频图像的应用(重点讲解哈里斯角点的检测)
    Shiro学习详解
    【从0到1设计一个网关】性能优化---Netty线程数配置与JVM参数配置
    2022杭电多校5(总结+补题)
    JAVA毕业设计剧院售票系统计算机源码+lw文档+系统+调试部署+数据库
    Zookeeper是什么,它有什么特性与使用场景?
    Mybatis——动态sql和分页
    Navicat操作mysql分区
  • 原文地址:https://blog.csdn.net/qq_60653991/article/details/133862892