• 简单的块设备驱动例程


    单队列架构的:

    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    #include 
    
    static int ramdisk_major = 0;
    module_param(ramdisk_major, int, 0);
    static int hardsect_size = 512;
    module_param(hardsect_size, int, 0);
    static int nsectors = 1024;
    module_param(nsectors, int, 0);
    
    #define RAMDISK_MINORS		16
    
    struct ramdisk_dev {
    	int size;
    	int users;
    	u8 *data;
    	spinlock_t lock;
    	struct gendisk *gd;
    	struct request_queue *queue;
    };
    
    static struct ramdisk_dev *Devices = NULL;
    
    static void ramdisk_transfer(struct ramdisk_dev *dev, unsigned long sector,
    		unsigned long nsect, char *buffer, int write)
    {
    	unsigned long offset = sector * hardsect_size;
    	unsigned long nbytes = nsect * hardsect_size;
    
    	if ((offset + nbytes) > dev->size) {
    		printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes);
    		return;
    	}
    	if (write)
    		memcpy(dev->data + offset, buffer, nbytes);
    	else
    		memcpy(buffer, dev->data + offset, nbytes);
    }
    
    static int ramdisk_xfer_bio(struct ramdisk_dev *dev, struct bio *bio)
    {
    	int index;
    	struct bio_vec *bvec;
    	sector_t sector = bio->bi_sector; //bio的起始扇区号
    
    	bio_for_each_segment(bvec, bio, index) { //遍历bio里面的每一个bvec
    		char *buffer = __bio_kmap_atomic(bio, index);//bvec bv_page成员转内核态虚拟地址
    		unsigned len = bvec->bv_len >> 9;//当前bvec的扇区数
    
    		ramdisk_transfer(dev, sector, len, buffer, bio_data_dir(bio) == WRITE);
    		sector += len; //扇区数累加
    		__bio_kunmap_atomic(bio); //解除映射
    	}
    	return 0;
    }
    
    static int ramdisk_make_request(struct request_queue *q, struct bio *bio)
    {
    	struct ramdisk_dev *dev = q->queuedata;
    	int status = ramdisk_xfer_bio(dev, bio);
    	bio_endio(bio, status);
    }
    
    int ramdisk_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
    {
    	printk("ramdisk_ioctl \n");
    	return 0;
    }
    
    static int ramdisk_open(struct block_device *bdev, fmode_t mode)
    {
    	struct ramdisk_dev *dev = bdev->bd_disk->private_data;
    
    	spin_lock(&dev->lock);
    	if (!dev->users)
    		check_disk_change(bdev);
    	++dev->users;
    	printk("ramdisk_open, dev->users = %d\n", dev->users);
    	spin_unlock(&dev->lock);
    	return 0;
    }
    
    static void ramdisk_release(struct gendisk *disk, fmode_t mode)
    {
    	struct ramdisk_dev *dev = disk->private_data;
    	spin_lock(&dev->lock);
    	--dev->users;
    	printk("ramdisk_release, dev->users = %d\n", dev->users);
    	spin_unlock(&dev->lock);
    }
    
    static struct block_device_operations ramdisk_ops = {
    	.owner = THIS_MODULE,
    	.ioctl = ramdisk_ioctl,
    	.open = ramdisk_open,
    	.release = ramdisk_release,
    };
    
    static void setup_device(struct ramdisk_dev *dev)
    {
    	memset (dev, 0, sizeof (struct ramdisk_dev));
    	dev->size = nsectors * hardsect_size;
    	dev->data = vmalloc(dev->size);
    	if (dev->data == NULL) {
    		printk (KERN_NOTICE "vmalloc failure.\n");
    		return;
    	}
    	spin_lock_init(&dev->lock);
    
    	dev->queue = blk_alloc_queue(GFP_KERNEL);
    	if (dev->queue == NULL)
    		goto out_vfree;
    	blk_queue_make_request(dev->queue, ramdisk_make_request);
    	dev->queue->queuedata = dev;
    
    	dev->gd = alloc_disk(RAMDISK_MINORS);
    	if (!dev->gd) {
    		printk (KERN_NOTICE "alloc_disk failure\n");
    		goto out_alloc_disk;
    	}
    	dev->gd->major = ramdisk_major;
    	dev->gd->first_minor = RAMDISK_MINORS;
    	dev->gd->fops = &ramdisk_ops;
    	dev->gd->queue = dev->queue;
    	dev->gd->private_data = dev;
    	snprintf (dev->gd->disk_name, 32, "ramdisk%c", 'a');
    	set_capacity(dev->gd, nsectors);
    	add_disk(dev->gd);
    	return;
    out_alloc_disk:
    	blk_cleanup_queue(dev->queue);
    	dev->queue = NULL;
    out_vfree:
    	if (dev->data)
    		vfree(dev->data);
    }
    
    static int __init ramdisk_init(void)
    {
    	ramdisk_major = register_blkdev(ramdisk_major, "ramdisk");
    	if (ramdisk_major <= 0) {
    		printk(KERN_WARNING "ramdisk: unable to get major number\n");
    		return -EBUSY;
    	}
    	Devices = kmalloc(sizeof(struct ramdisk_dev), GFP_KERNEL);
    	if(Devices == NULL)
    		goto out_unregister;
    
    	setup_device(Devices);
    	return 0;
    out_unregister:
    	unregister_blkdev(ramdisk_major, "ramdisk");
    	return -ENOMEM;
    }
    
    static void __exit ramdisk_exit(void)
    {
    	if(Devices->gd)
    		del_gendisk(Devices->gd);
    	if(Devices->queue)
    		blk_cleanup_queue(Devices->queue);
    	if(Devices->data)
    		vfree(Devices->data);
    	kfree(Devices);
    	unregister_blkdev(ramdisk_major, "ramdisk");
    }
    
    module_init(ramdisk_init);
    module_exit(ramdisk_exit);
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183

    Makefile:

    # SPDX-License-Identifier: GPL-2.0
    obj-m += ram.o
    ram-objs := ramdisk.o
    
    all:
    	make -C /usr/src/linux-headers-$(shell uname -r) M=$(shell pwd) modules
    clean:
    	make -C /lib/modules/$(shell uname -r)/build M=$(shell pwd) clean
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    代码在linux3.13版本下可以编译通过,装载驱动以后,可以用fio工具进行读写测试。

    多队列架构的:

    #include 
    #include 
    #include 
    
    #include 
    #include 	/* printk() */
    #include 		/* kmalloc() */
    #include 		/* everything... */
    #include 	/* error codes */
    #include 	/* size_t */
    #include 	/* O_ACCMODE */
    #include 	/* HDIO_GETGEO */
    #include 
    #include 
    #include 
    #include 
    #include 	/* invalidate_bdev */
    #include 
    
    #ifndef BLK_STS_OK
    typedef int blk_status_t;
    #define BLK_STS_OK 0
    #define OLDER_KERNEL 1
    #endif
    
    #ifndef BLK_STS_IOERR
    #define BLK_STS_IOERR 10
    #endif
     
    #ifndef SECTOR_SHIFT
    #define SECTOR_SHIFT 9
    #endif
    
    /* FIXME: implement these macros in kernel mainline */
    #define size_to_sectors(size) ((size) >> SECTOR_SHIFT)
    #define sectors_to_size(size) ((size) << SECTOR_SHIFT)
    
    static int sbull_major;
    module_param(sbull_major, int, 0);
    static int logical_block_size = 512;
    module_param(logical_block_size, int, 0);
    static char* disk_size = "256M";
    module_param(disk_size, charp, 0);
    static int ndevices = 1;
    module_param(ndevices, int, 0);
    static bool debug = false;
    module_param(debug, bool, false);
    
    #define SBULL_MINORS	16
    #define KERNEL_SECTOR_SIZE	512
    
    struct sbull_dev {
    	int size;                       /* Device size in sectors */
    	u8 *data;                       /* The data array */
    	spinlock_t lock;                /* For mutual exclusion */
    	struct request_queue *queue;    /* The device request queue */
    	struct gendisk *gd;             /* The gendisk structure */
    	struct blk_mq_tag_set tag_set;
    };
    
    static struct sbull_dev *Devices;
    
    static blk_status_t sbull_transfer(struct sbull_dev *dev, unsigned long sector, unsigned long nsect, char *buffer, int op)
    {
    	unsigned long offset = sectors_to_size(sector);
    	unsigned long nbytes = sectors_to_size(nsect);
     
    	if ((offset + nbytes) > dev->size) {
    		pr_notice("Beyond-end write (%ld %ld)\n", offset, nbytes);
    		return BLK_STS_IOERR;
    	}
    
    	if  (debug)
    		pr_info("%s: %s, sector: %ld, nsectors: %ld, offset: %ld,"
    			       " nbytes: %ld",
    			dev->gd->disk_name,
    			op == REQ_OP_WRITE ? "WRITE" : "READ", sector, nsect,
    			offset, nbytes);
    
    	if (op == REQ_OP_WRITE)
    		memcpy(dev->data + offset, buffer, nbytes);
    	else
    		memcpy(buffer, dev->data + offset, nbytes);
    	return BLK_STS_OK;
    }
    
    static blk_status_t sbull_queue_rq(struct blk_mq_hw_ctx *hctx, const struct blk_mq_queue_data *bd)
    {
    	struct request *req = bd->rq;
    	struct sbull_dev *dev = req->rq_disk->private_data;
    	int op = req_op(req);
    	blk_status_t ret;
    
    	blk_mq_start_request(req);
    	spin_lock(&dev->lock);
    
    	if (op != REQ_OP_READ && op != REQ_OP_WRITE) {
    		pr_notice("Skip non-fs request\n");
    		blk_mq_end_request(req, BLK_STS_IOERR);
    		spin_unlock(&dev->lock);
    		return BLK_STS_IOERR;
    	}
    
    	ret = sbull_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), bio_data(req->bio), op);
    
    	blk_mq_end_request(req, ret);
    	spin_unlock(&dev->lock);
    	return ret;
    }
    
    static const struct block_device_operations sbull_ops = {
    	.owner	= THIS_MODULE,
    };
    
    static const struct blk_mq_ops sbull_mq_ops = {
    	.queue_rq = sbull_queue_rq,
    };
    
    static struct request_queue *create_req_queue(struct blk_mq_tag_set *set)
    {
    	struct request_queue *q;
    #ifndef OLDER_KERNEL
    	q = blk_mq_init_sq_queue(set, &sbull_mq_ops, 2, BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING);
    #else
    	int ret;
    	memset(set, 0, sizeof(*set));
    	set->ops = &sbull_mq_ops;
    	set->nr_hw_queues = 1;
    	/*set->nr_maps = 1;*/
    	set->queue_depth = 2;
    	set->numa_node = NUMA_NO_NODE;
    	set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
     
    	ret = blk_mq_alloc_tag_set(set);
    	if (ret)
    		return ERR_PTR(ret);
     
    	q = blk_mq_init_queue(set);
    	if (IS_ERR(q)) {
    		blk_mq_free_tag_set(set);
    		return q;
    	}
    #endif
    	return q;
    }
    
    static void setup_device(struct sbull_dev *dev, int which)
    {
    	long long sbull_size = memparse(disk_size, NULL);
     
    	memset(dev, 0, sizeof(struct sbull_dev));
    	dev->size = sbull_size;
    	dev->data = vzalloc(dev->size);
    	if (dev->data == NULL) {
    		pr_notice("vmalloc failure.\n");
    		return;
    	}
    	spin_lock_init(&dev->lock);
     
    	dev->queue = create_req_queue(&dev->tag_set);
    	if (IS_ERR(dev->queue))
    		goto out_vfree;
     
    	blk_queue_logical_block_size(dev->queue, logical_block_size);
    	dev->queue->queuedata = dev;
    
    	dev->gd = alloc_disk(SBULL_MINORS);
    	if (!dev->gd) {
    		pr_notice("alloc_disk failure\n");
    		goto out_vfree;
    	}
    	dev->gd->major = sbull_major;
    	dev->gd->first_minor = which*SBULL_MINORS;
    	dev->gd->fops = &sbull_ops;
    	dev->gd->queue = dev->queue;
    	dev->gd->private_data = dev;
    	snprintf(dev->gd->disk_name, 32, "sbull%c", which + 'a');
    	set_capacity(dev->gd, size_to_sectors(sbull_size));
    	add_disk(dev->gd);
    	return;
     
    out_vfree:
    	if (dev->data)
    		vfree(dev->data);
    }
    
    static int __init sbull_init(void)
    {
    	int i;
    
    	sbull_major = register_blkdev(sbull_major, "sbull");
    	if (sbull_major <= 0) {
    		pr_warn("sbull: unable to get major number\n");
    		return -EBUSY;
    	}
    
    	Devices = kmalloc(ndevices * sizeof(struct sbull_dev), GFP_KERNEL);
    	if (Devices == NULL)
    		goto out_unregister;
    	for (i = 0; i < ndevices; i++)
    		setup_device(Devices + i, i);
    	return 0;
    out_unregister:
    	unregister_blkdev(sbull_major, "sbull");
    	return -ENOMEM;
    }
    
    static void sbull_exit(void)
    {
    	int i;
    
    	for (i = 0; i < ndevices; i++) {
    		struct sbull_dev *dev = Devices + i;
    
    		if (dev->gd) {
    			del_gendisk(dev->gd);
    			put_disk(dev->gd);
    		}
    		if (dev->queue)
    			blk_cleanup_queue(dev->queue);
    
    		if (dev->data)
    			vfree(dev->data);
    	}
    	unregister_blkdev(sbull_major, "sbull");
    	kfree(Devices);
    }
    
    module_init(sbull_init);
    module_exit(sbull_exit);
    
    MODULE_LICENSE("GPL");
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232

    参考:https://blog.csdn.net/jfhgk3445/article/details/104792941/

  • 相关阅读:
    C++菜鸟日记2
    java 企业工程管理系统软件源码 自主研发 工程行业适用
    车规级芯片之 MCU、MPU、DSP、FPGA、SOC
    计算机毕业论文java毕业设计选题基于springboot的社区服务管理包运行成功]
    非零基础自学Java (老师:韩顺平) 第4章 运算符 4.3 关系运算符(比较运算符)
    小波去噪算法的简易实现及其扩展(小波锐化、高斯拉普拉斯金字塔去噪及锐化)之二。
    MySQL - B-树和B+树
    单片机学习笔记---LCD1602功能函数代码
    oracle临时表
    利用redis + mysql 完成签到
  • 原文地址:https://blog.csdn.net/qq_38158479/article/details/133859511