• 目标检测算法改进系列之Backbone替换为FocalNet


    FocalNet

    近些年,Transformers在自然语言处理、图像分类、目标检测和图像分割上均取得了较大的成功,归根结底是自注意力(SA :self-attention)起到了关键性的作用,因此能够支持输入信息的全局交互。但是由于视觉tokens的大量存在,自注意力的计算复杂度高,尤其是在高分辨的输入时,因此针对该缺陷,论文《Focal Modulation Networks》提出了FocalNet网络。

    论文地址:Focal Modulation Networks

    原理:使用新提出的Focal Modulation替代之前的SA自注意力模块,解耦聚合和单个查询过程,先将查询周围的上下文信息进行聚合,再根据聚合信息获取查询结果。如下图所示,图中红色表示query token。对比来看,Window-wise Self-Attention (SA)利用周围的token(橙色)来捕获空间上下文信息;在此基础上,Focal Attention扩大了感受野,还可以使用更远的summarized tokens(蓝色);而Focal Modulation更为强大,先利用诸如depth-wise convolution的方式将不同粒度级别的空间上下文编码为summarized tokens (橙色、绿色和蓝色),再根据查询内容,选择性的将这些summarized tokens融合为query token。而本文新提出的方式便是进行轻量化,将聚合和单个查询进行解耦,减少计算量。

    在前两者中,绿色和紫色箭头分别代表注意力交互和基于查询的聚合,但是都存在一个缺陷,即:均需要涉及大量的交互和聚合操作。而Focal Modulation计算过程得到大量简化。
    原理图

    FocalNet代码实现

    # --------------------------------------------------------
    # FocalNets -- Focal Modulation Networks
    # Copyright (c) 2022 Microsoft
    # Licensed under The MIT License [see LICENSE for details]
    # Written by Jianwei Yang (jianwyan@microsoft.com)
    # --------------------------------------------------------
    
    import numpy as np
    import torch
    import torch.nn as nn
    import torch.nn.functional as F
    import torch.utils.checkpoint as checkpoint
    from timm.models.layers import DropPath, to_2tuple, trunc_normal_
    
    __all__ = ['focalnet_tiny_srf', 'focalnet_tiny_lrf', 'focalnet_small_srf', 'focalnet_small_lrf', 'focalnet_base_srf', 'focalnet_base_lrf', 'focalnet_large_fl3', 'focalnet_large_fl4', 'focalnet_xlarge_fl3', 'focalnet_xlarge_fl4', 'focalnet_huge_fl3', 'focalnet_huge_fl4']
    
    def update_weight(model_dict, weight_dict):
        idx, temp_dict = 0, {}
        for k, v in weight_dict.items():
            if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
                temp_dict[k] = v
                idx += 1
        model_dict.update(temp_dict)
        print(f'loading weights... {idx}/{len(model_dict)} items')
        return model_dict
    
    class Mlp(nn.Module):
        def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
            super().__init__()
            out_features = out_features or in_features
            hidden_features = hidden_features or in_features
            self.fc1 = nn.Linear(in_features, hidden_features)
            self.act = act_layer()
            self.fc2 = nn.Linear(hidden_features, out_features)
            self.drop = nn.Dropout(drop)
    
        def forward(self, x):
            x = self.fc1(x)     
            x = self.act(x)
            x = self.drop(x)
            x = self.fc2(x)
            x = self.drop(x)
            return x
    
    class FocalModulation(nn.Module):
        def __init__(self, dim, focal_window, focal_level, focal_factor=2, bias=True, proj_drop=0., use_postln_in_modulation=False, normalize_modulator=False):
            super().__init__()
    
            self.dim = dim
            self.focal_window = focal_window
            self.focal_level = focal_level
            self.focal_factor = focal_factor
            self.use_postln_in_modulation = use_postln_in_modulation
            self.normalize_modulator = normalize_modulator
    
            self.f = nn.Linear(dim, 2*dim + (self.focal_level+1), bias=bias)
            self.h = nn.Conv2d(dim, dim, kernel_size=1, stride=1, bias=bias)
    
            self.act = nn.GELU()
            self.proj = nn.Linear(dim, dim)
            self.proj_drop = nn.Dropout(proj_drop)
            self.focal_layers = nn.ModuleList()
                    
            self.kernel_sizes = []
            for k in range(self.focal_level):
                kernel_size = self.focal_factor*k + self.focal_window
                self.focal_layers.append(
                    nn.Sequential(
                        nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, 
                        groups=dim, padding=kernel_size//2, bias=False),
                        nn.GELU(),
                        )
                    )              
                self.kernel_sizes.append(kernel_size)          
            if self.use_postln_in_modulation:
                self.ln = nn.LayerNorm(dim)
    
        def forward(self, x):
            """
            Args:
                x: input features with shape of (B, H, W, C)
            """
            C = x.shape[-1]
    
            # pre linear projection
            x = self.f(x).permute(0, 3, 1, 2).contiguous()
            q, ctx, gates = torch.split(x, (C, C, self.focal_level+1), 1)
            
            # context aggreation
            ctx_all = 0 
            for l in range(self.focal_level):         
                ctx = self.focal_layers[l](ctx)
                ctx_all = ctx_all + ctx * gates[:, l:l+1]
            ctx_global = self.act(ctx.mean(2, keepdim=True).mean(3, keepdim=True))
            ctx_all = ctx_all + ctx_global * gates[:,self.focal_level:]
    
            # normalize context
            if self.normalize_modulator:
                ctx_all = ctx_all / (self.focal_level+1)
    
            # focal modulation
            modulator = self.h(ctx_all)
            x_out = q * modulator
            x_out = x_out.permute(0, 2, 3, 1).contiguous()
            if self.use_postln_in_modulation:
                x_out = self.ln(x_out)
            
            # post linear porjection
            x_out = self.proj(x_out)
            x_out = self.proj_drop(x_out)
            return x_out
    
        def extra_repr(self) -> str:
            return f'dim={self.dim}'
    
        def flops(self, N):
            # calculate flops for 1 window with token length of N
            flops = 0
    
            flops += N * self.dim * (self.dim * 2 + (self.focal_level+1))
    
            # focal convolution
            for k in range(self.focal_level):
                flops += N * (self.kernel_sizes[k]**2+1) * self.dim
    
            # global gating
            flops += N * 1 * self.dim 
    
            #  self.linear
            flops += N * self.dim * (self.dim + 1)
    
            # x = self.proj(x)
            flops += N * self.dim * self.dim
            return flops
    
    class FocalNetBlock(nn.Module):
        r""" Focal Modulation Network Block.
    
        Args:
            dim (int): Number of input channels.
            input_resolution (tuple[int]): Input resulotion.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            drop (float, optional): Dropout rate. Default: 0.0
            drop_path (float, optional): Stochastic depth rate. Default: 0.0
            act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
            norm_layer (nn.Module, optional): Normalization layer.  Default: nn.LayerNorm
            focal_level (int): Number of focal levels. 
            focal_window (int): Focal window size at first focal level
            use_layerscale (bool): Whether use layerscale
            layerscale_value (float): Initial layerscale value
            use_postln (bool): Whether use layernorm after modulation
        """
    
        def __init__(self, dim, input_resolution, mlp_ratio=4., drop=0., drop_path=0., 
                        act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                        focal_level=1, focal_window=3,
                        use_layerscale=False, layerscale_value=1e-4, 
                        use_postln=False, use_postln_in_modulation=False, 
                        normalize_modulator=False):
            super().__init__()
            self.dim = dim
            self.input_resolution = input_resolution
            self.mlp_ratio = mlp_ratio
    
            self.focal_window = focal_window
            self.focal_level = focal_level
            self.use_postln = use_postln
    
            self.norm1 = norm_layer(dim)
            self.modulation = FocalModulation(
                dim, proj_drop=drop, focal_window=focal_window, focal_level=self.focal_level, 
                use_postln_in_modulation=use_postln_in_modulation, normalize_modulator=normalize_modulator
            )
    
            self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
            self.norm2 = norm_layer(dim)
            mlp_hidden_dim = int(dim * mlp_ratio)
            self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
    
            self.gamma_1 = 1.0
            self.gamma_2 = 1.0    
            if use_layerscale:
                self.gamma_1 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
                self.gamma_2 = nn.Parameter(layerscale_value * torch.ones((dim)), requires_grad=True)
    
            self.H = None
            self.W = None
    
        def forward(self, x):
            H, W = self.H, self.W
            B, L, C = x.shape
            shortcut = x
    
            # Focal Modulation
            x = x if self.use_postln else self.norm1(x)
            x = x.view(B, H, W, C)
            x = self.modulation(x).view(B, H * W, C)
            x = x if not self.use_postln else self.norm1(x)
    
            # FFN
            x = shortcut + self.drop_path(self.gamma_1 * x)
            x = x + self.drop_path(self.gamma_2 * (self.norm2(self.mlp(x)) if self.use_postln else self.mlp(self.norm2(x))))
    
            return x
    
        def extra_repr(self) -> str:
            return f"dim={self.dim}, input_resolution={self.input_resolution}, " \
                   f"mlp_ratio={self.mlp_ratio}"
    
        def flops(self):
            flops = 0
            H, W = self.input_resolution
            # norm1
            flops += self.dim * H * W
            
            # W-MSA/SW-MSA
            flops += self.modulation.flops(H*W)
    
            # mlp
            flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
            # norm2
            flops += self.dim * H * W
            return flops
    
    class BasicLayer(nn.Module):
        """ A basic Focal Transformer layer for one stage.
    
        Args:
            dim (int): Number of input channels.
            input_resolution (tuple[int]): Input resolution.
            depth (int): Number of blocks.
            window_size (int): Local window size.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
            qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
            qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
            drop (float, optional): Dropout rate. Default: 0.0
            drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
            norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
            downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
            use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
            focal_level (int): Number of focal levels
            focal_window (int): Focal window size at first focal level
            use_layerscale (bool): Whether use layerscale
            layerscale_value (float): Initial layerscale value
            use_postln (bool): Whether use layernorm after modulation
        """
    
        def __init__(self, dim, out_dim, input_resolution, depth,
                     mlp_ratio=4., drop=0., drop_path=0., norm_layer=nn.LayerNorm, 
                     downsample=None, use_checkpoint=False, 
                     focal_level=1, focal_window=1, 
                     use_conv_embed=False, 
                     use_layerscale=False, layerscale_value=1e-4, 
                     use_postln=False, 
                     use_postln_in_modulation=False, 
                     normalize_modulator=False):
    
            super().__init__()
            self.dim = dim
            self.input_resolution = input_resolution
            self.depth = depth
            self.use_checkpoint = use_checkpoint
            
            # build blocks
            self.blocks = nn.ModuleList([
                FocalNetBlock(
                    dim=dim, 
                    input_resolution=input_resolution,
                    mlp_ratio=mlp_ratio, 
                    drop=drop, 
                    drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
                    norm_layer=norm_layer,
                    focal_level=focal_level,
                    focal_window=focal_window, 
                    use_layerscale=use_layerscale, 
                    layerscale_value=layerscale_value,
                    use_postln=use_postln, 
                    use_postln_in_modulation=use_postln_in_modulation, 
                    normalize_modulator=normalize_modulator, 
                )
                for i in range(depth)])
    
            if downsample is not None:
                self.downsample = downsample(
                    img_size=input_resolution, 
                    patch_size=2, 
                    in_chans=dim, 
                    embed_dim=out_dim, 
                    use_conv_embed=use_conv_embed, 
                    norm_layer=norm_layer, 
                    is_stem=False
                )
            else:
                self.downsample = None
    
        def forward(self, x, H, W):
            for blk in self.blocks:
                blk.H, blk.W = H, W
                if self.use_checkpoint:
                    x = checkpoint.checkpoint(blk, x)
                else:
                    x = blk(x)
    
            if self.downsample is not None:
                x = x.transpose(1, 2).reshape(x.shape[0], -1, H, W)
                x, Ho, Wo = self.downsample(x)
            else:
                Ho, Wo = H, W        
            return x, Ho, Wo
    
        def extra_repr(self) -> str:
            return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
    
        def flops(self):
            flops = 0
            for blk in self.blocks:
                flops += blk.flops()
            if self.downsample is not None:
                flops += self.downsample.flops()
            return flops
    
    class PatchEmbed(nn.Module):
        r""" Image to Patch Embedding
    
        Args:
            img_size (int): Image size.  Default: 224.
            patch_size (int): Patch token size. Default: 4.
            in_chans (int): Number of input image channels. Default: 3.
            embed_dim (int): Number of linear projection output channels. Default: 96.
            norm_layer (nn.Module, optional): Normalization layer. Default: None
        """
    
        def __init__(self, img_size=(224, 224), patch_size=4, in_chans=3, embed_dim=96, use_conv_embed=False, norm_layer=None, is_stem=False):
            super().__init__()
            patch_size = to_2tuple(patch_size)
            patches_resolution = [img_size[0] // patch_size[0], img_size[1] // patch_size[1]]
            self.img_size = img_size
            self.patch_size = patch_size
            self.patches_resolution = patches_resolution
            self.num_patches = patches_resolution[0] * patches_resolution[1]
    
            self.in_chans = in_chans
            self.embed_dim = embed_dim
    
            if use_conv_embed:
                # if we choose to use conv embedding, then we treat the stem and non-stem differently
                if is_stem:
                    kernel_size = 7; padding = 2; stride = 4
                else:
                    kernel_size = 3; padding = 1; stride = 2
                self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=stride, padding=padding)
            else:
                self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
            
            if norm_layer is not None:
                self.norm = norm_layer(embed_dim)
            else:
                self.norm = None
    
        def forward(self, x):
            B, C, H, W = x.shape
    
            x = self.proj(x)        
            H, W = x.shape[2:]
            x = x.flatten(2).transpose(1, 2)  # B Ph*Pw C
            if self.norm is not None:
                x = self.norm(x)
            return x, H, W
    
        def flops(self):
            Ho, Wo = self.patches_resolution
            flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
            if self.norm is not None:
                flops += Ho * Wo * self.embed_dim
            return flops
    
    class FocalNet(nn.Module):
        r""" Focal Modulation Networks (FocalNets)
    
        Args:
            img_size (int | tuple(int)): Input image size. Default 224
            patch_size (int | tuple(int)): Patch size. Default: 4
            in_chans (int): Number of input image channels. Default: 3
            num_classes (int): Number of classes for classification head. Default: 1000
            embed_dim (int): Patch embedding dimension. Default: 96
            depths (tuple(int)): Depth of each Focal Transformer layer.
            mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
            drop_rate (float): Dropout rate. Default: 0
            drop_path_rate (float): Stochastic depth rate. Default: 0.1
            norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
            patch_norm (bool): If True, add normalization after patch embedding. Default: True
            use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False 
            focal_levels (list): How many focal levels at all stages. Note that this excludes the finest-grain level. Default: [1, 1, 1, 1] 
            focal_windows (list): The focal window size at all stages. Default: [7, 5, 3, 1] 
            use_conv_embed (bool): Whether use convolutional embedding. We noted that using convolutional embedding usually improve the performance, but we do not use it by default. Default: False 
            use_layerscale (bool): Whether use layerscale proposed in CaiT. Default: False 
            layerscale_value (float): Value for layer scale. Default: 1e-4 
            use_postln (bool): Whether use layernorm after modulation (it helps stablize training of large models)
        """
        def __init__(self, 
                    img_size=224, 
                    patch_size=4, 
                    in_chans=3, 
                    num_classes=1000,
                    embed_dim=96, 
                    depths=[2, 2, 6, 2], 
                    mlp_ratio=4., 
                    drop_rate=0., 
                    drop_path_rate=0.1,
                    norm_layer=nn.LayerNorm, 
                    patch_norm=True,
                    use_checkpoint=False,                 
                    focal_levels=[2, 2, 2, 2], 
                    focal_windows=[3, 3, 3, 3], 
                    use_conv_embed=False, 
                    use_layerscale=False, 
                    layerscale_value=1e-4, 
                    use_postln=False, 
                    use_postln_in_modulation=False, 
                    normalize_modulator=False, 
                    **kwargs):
            super().__init__()
    
            self.num_layers = len(depths)
            embed_dim = [embed_dim * (2 ** i) for i in range(self.num_layers)]
    
            self.num_classes = num_classes
            self.embed_dim = embed_dim
            self.patch_norm = patch_norm
            self.num_features = embed_dim[-1]
            self.mlp_ratio = mlp_ratio
            
            # split image into patches using either non-overlapped embedding or overlapped embedding
            self.patch_embed = PatchEmbed(
                img_size=to_2tuple(img_size), 
                patch_size=patch_size, 
                in_chans=in_chans, 
                embed_dim=embed_dim[0], 
                use_conv_embed=use_conv_embed, 
                norm_layer=norm_layer if self.patch_norm else None, 
                is_stem=True)
    
            num_patches = self.patch_embed.num_patches
            patches_resolution = self.patch_embed.patches_resolution
            self.patches_resolution = patches_resolution
            self.pos_drop = nn.Dropout(p=drop_rate)
    
            # stochastic depth
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
    
            # build layers
            self.layers = nn.ModuleList()
            for i_layer in range(self.num_layers):
                layer = BasicLayer(dim=embed_dim[i_layer], 
                                   out_dim=embed_dim[i_layer+1] if (i_layer < self.num_layers - 1) else None,  
                                   input_resolution=(patches_resolution[0] // (2 ** i_layer),
                                                     patches_resolution[1] // (2 ** i_layer)),
                                   depth=depths[i_layer],
                                   mlp_ratio=self.mlp_ratio,
                                   drop=drop_rate, 
                                   drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
                                   norm_layer=norm_layer, 
                                   downsample=PatchEmbed if (i_layer < self.num_layers - 1) else None,
                                   focal_level=focal_levels[i_layer], 
                                   focal_window=focal_windows[i_layer], 
                                   use_conv_embed=use_conv_embed,
                                   use_checkpoint=use_checkpoint, 
                                   use_layerscale=use_layerscale, 
                                   layerscale_value=layerscale_value, 
                                   use_postln=use_postln,
                                   use_postln_in_modulation=use_postln_in_modulation, 
                                   normalize_modulator=normalize_modulator
                        )
                self.layers.append(layer)
    
            self.norm = norm_layer(self.num_features)
    
            self.apply(self._init_weights)
            self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    
        def _init_weights(self, m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)
    
        @torch.jit.ignore
        def no_weight_decay(self):
            return {''}
    
        @torch.jit.ignore
        def no_weight_decay_keywords(self):
            return {''}
    
        def forward(self, x):
            input_size = x.size(2)
            scale = [4, 8, 16, 32]
            
            x, H, W = self.patch_embed(x)
            x = self.pos_drop(x)
            features = [x, None, None, None]
            for layer in self.layers:
                x, H, W = layer(x, H, W)
                if input_size // H in scale:
                    features[scale.index(input_size // H)] = x
            # features[-1] = self.norm(features[-1])  # B L C
            
            for i in range(len(features)):
                features[i] = torch.transpose(features[i], dim0=2, dim1=1).view(-1,features[i].size(2), int(features[i].size(1) ** 0.5), int(features[i].size(1) ** 0.5))
            
            return features
    
        def flops(self):
            flops = 0
            flops += self.patch_embed.flops()
            for i, layer in enumerate(self.layers):
                flops += layer.flops()
            flops += self.num_features * self.patches_resolution[0] * self.patches_resolution[1] // (2 ** self.num_layers)
            flops += self.num_features * self.num_classes
            return flops
    
    model_urls = {
        "focalnet_tiny_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth",
        "focalnet_tiny_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth",
        "focalnet_small_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth",
        "focalnet_small_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth",
        "focalnet_base_srf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth",
        "focalnet_base_lrf": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth",    
        "focalnet_large_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth", 
        "focalnet_large_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth", 
        "focalnet_xlarge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth", 
        "focalnet_xlarge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth", 
        "focalnet_huge_fl3": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224.pth", 
        "focalnet_huge_fl4": "https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_huge_lrf_224_fl4.pth", 
    }
    
    def focalnet_tiny_srf(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
        if pretrained:
            url = model_urls['focalnet_tiny_srf']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_small_srf(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
        if pretrained:
            url = model_urls['focalnet_small_srf']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_base_srf(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
        if pretrained:
            url = model_urls['focalnet_base_srf']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_tiny_lrf(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 6, 2], embed_dim=96, **kwargs)
        if pretrained:
            url = model_urls['focalnet_tiny_lrf']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_small_lrf(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=96, **kwargs)
        if pretrained:
            url = model_urls['focalnet_small_lrf']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_base_lrf(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=128, **kwargs)
        if pretrained:
            url = model_urls['focalnet_base_lrf']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_tiny_iso(pretrained=False, **kwargs):
        model = FocalNet(depths=[12], patch_size=16, embed_dim=192, **kwargs)
        if pretrained:
            url = model_urls['focalnet_tiny_iso']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_small_iso(pretrained=False, **kwargs):
        model = FocalNet(depths=[12], patch_size=16, embed_dim=384, **kwargs)
        if pretrained:
            url = model_urls['focalnet_small_iso']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_base_iso(pretrained=False, **kwargs):
        model = FocalNet(depths=[12], patch_size=16, embed_dim=768, focal_levels=[3], focal_windows=[3], use_layerscale=True, use_postln=True, **kwargs)
        if pretrained:
            url = model_urls['focalnet_base_iso']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    # FocalNet large+ models 
    def focalnet_large_fl3(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)
        if pretrained:
            url = model_urls['focalnet_large_fl3']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_large_fl4(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=192, **kwargs)
        if pretrained:
            url = model_urls['focalnet_large_fl4']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_xlarge_fl3(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)
        if pretrained:
            url = model_urls['focalnet_xlarge_fl3']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_xlarge_fl4(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=256, **kwargs)
        if pretrained:
            url = model_urls['focalnet_xlarge_fl4']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_huge_fl3(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)
        if pretrained:
            url = model_urls['focalnet_huge_fl3']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    def focalnet_huge_fl4(pretrained=False, **kwargs):
        model = FocalNet(depths=[2, 2, 18, 2], embed_dim=352, **kwargs)
        if pretrained:
            url = model_urls['focalnet_huge_fl4']
            checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
            model.load_state_dict(update_weight(model.state_dict(), checkpoint["model"]))
        return model
    
    if __name__ == '__main__':
        from copy import deepcopy
        img_size = 640
        x = torch.rand(16, 3, img_size, img_size).cuda()
        model = focalnet_tiny_srf(pretrained=True).cuda()
        # model_copy = deepcopy(model)
        for i in model(x):
            print(i.size())
    
        flops = model.flops()
        print(f"number of GFLOPs: {flops / 1e9}")
    
        n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
        print(f"number of params: {n_parameters}")
        
        print(list(model_urls.keys()))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676

    Backbone替换

    yolo.py修改

    def parse_model函数

    def parse_model(d, ch):  # model_dict, input_channels(3)
        # Parse a YOLOv5 model.yaml dictionary
        LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
        anchors, nc, gd, gw, act = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple'], d.get('activation')
        if act:
            Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
        na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors  # number of anchors
        no = na * (nc + 5)  # number of outputs = anchors * (classes + 5)
    
        is_backbone = False
        layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
        for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
            try:
                t = m
                m = eval(m) if isinstance(m, str) else m  # eval strings
            except:
                pass
            for j, a in enumerate(args):
                with contextlib.suppress(NameError):
                    try:
                        args[j] = eval(a) if isinstance(a, str) else a  # eval strings
                    except:
                        args[j] = a
    
            n = n_ = max(round(n * gd), 1) if n > 1 else n  # depth gain
            if m in {
                    Conv, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, MixConv2d, Focus, CrossConv,
                    BottleneckCSP, C3, C3TR, C3SPP, C3Ghost, nn.ConvTranspose2d, DWConvTranspose2d, C3x}:
                c1, c2 = ch[f], args[0]
                if c2 != no:  # if not output
                    c2 = make_divisible(c2 * gw, 8)
    
                args = [c1, c2, *args[1:]]
                if m in {BottleneckCSP, C3, C3TR, C3Ghost, C3x}:
                    args.insert(2, n)  # number of repeats
                    n = 1
            elif m is nn.BatchNorm2d:
                args = [ch[f]]
            elif m is Concat:
                c2 = sum(ch[x] for x in f)
            # TODO: channel, gw, gd
            elif m in {Detect, Segment}:
                args.append([ch[x] for x in f])
                if isinstance(args[1], int):  # number of anchors
                    args[1] = [list(range(args[1] * 2))] * len(f)
                if m is Segment:
                    args[3] = make_divisible(args[3] * gw, 8)
            elif m is Contract:
                c2 = ch[f] * args[0] ** 2
            elif m is Expand:
                c2 = ch[f] // args[0] ** 2
            elif isinstance(m, str):
                t = m
                m = timm.create_model(m, pretrained=args[0], features_only=True)
                c2 = m.feature_info.channels()
            elif m in {focalnet_tiny_srf}: #可添加更多Backbone
                m = m(*args)
                c2 = m.channel
            else:
                c2 = ch[f]
            if isinstance(c2, list):
                is_backbone = True
                m_ = m
                m_.backbone = True
            else:
                m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
                t = str(m)[8:-2].replace('__main__.', '')  # module type
            np = sum(x.numel() for x in m_.parameters())  # number params
            m_.i, m_.f, m_.type, m_.np = i + 4 if is_backbone else i, f, t, np  # attach index, 'from' index, type, number params
            LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  # print
            save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
            layers.append(m_)
            if i == 0:
                ch = []
            if isinstance(c2, list):
                ch.extend(c2)
                for _ in range(5 - len(ch)):
                    ch.insert(0, 0)
            else:
                ch.append(c2)
        return nn.Sequential(*layers), sorted(save)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82

    def _forward_once函数

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    创建新的.yaml配置文件

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    
    # Parameters
    nc: 80  # number of classes
    depth_multiple: 0.33  # model depth multiple
    width_multiple: 0.25  # layer channel multiple
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # 0-P1/2
    # 1-P2/4
    # 2-P3/8
    # 3-P4/16
    # 4-P5/32
    
    # YOLOv5 v6.0 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, focalnet_tiny_srf, [False]], # 4
       [-1, 1, SPPF, [1024, 5]],  # 5
      ]
    
    # YOLOv5 v6.0 head
    head:
      [[-1, 1, Conv, [512, 1, 1]], # 6
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 7
       [[-1, 3], 1, Concat, [1]],  # cat backbone P4 8
       [-1, 3, C3, [512, False]],  # 9
    
       [-1, 1, Conv, [256, 1, 1]], # 10
       [-1, 1, nn.Upsample, [None, 2, 'nearest']], # 11
       [[-1, 2], 1, Concat, [1]],  # cat backbone P3 12
       [-1, 3, C3, [256, False]],  # 13 (P3/8-small)
    
       [-1, 1, Conv, [256, 3, 2]], # 14
       [[-1, 10], 1, Concat, [1]],  # cat head P4 15
       [-1, 3, C3, [512, False]],  # 16 (P4/16-medium)
    
       [-1, 1, Conv, [512, 3, 2]], # 17
       [[-1, 5], 1, Concat, [1]],  # cat head P5 18
       [-1, 3, C3, [1024, False]],  # 19 (P5/32-large)
    
       [[13, 16, 19], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
  • 相关阅读:
    DOM系列之scroll系列
    大数据——Scala 模式匹配
    CSS之排列系列--顶部导航栏ul、li居中展示的方法
    【Python】绘制爱心
    【Vue-Router】路由懒加载的几种方式
    网络类型与数据链路层协议
    【Selenium】Selenium4 Grid
    Git的安装
    【笔记篇】10仓管系统出库管理——之《实战供应链》
    C++ STL库 map
  • 原文地址:https://blog.csdn.net/DM_zx/article/details/133587650