• C# Onnx Yolov8 Detect 水果识别


    目录

    效果

    模型信息

    项目

    代码

    lable.txt

    数据集

    下载 


    效果

    模型信息

    Model Properties
    -------------------------
    author:Ultralytics
    task:detect
    license:AGPL-3.0 https://ultralytics.com/license
    version:8.0.172
    stride:32
    batch:1
    imgsz:[640, 640]
    names:{0: 'cucumber', 1: 'apple', 2: 'kiwi', 3: 'banana', 4: 'orange', 5: 'coconut', 6: 'peach', 7: 'cherry', 8: 'pear', 9: 'pomegranate', 10: 'pineapple', 11: 'watermelon', 12: 'melon', 13: 'grape', 14: 'strawberry'}
    ---------------------------------------------------------------

    Inputs
    -------------------------
    name:images
    tensor:Float[1, 3, 640, 640]
    ---------------------------------------------------------------

    Outputs
    -------------------------
    name:output0
    tensor:Float[1, 19, 8400]
    ---------------------------------------------------------------

    项目

    VS2022

    .net framework 4.8

    OpenCvSharp 4.8

    Microsoft.ML.OnnxRuntime 1.16.2

    代码

    ///


    /// 结果绘制
    ///

    /// 识别结果
    /// 绘制图片
    ///
    public Mat draw_result(Result result, Mat image)
    {
        // 将识别结果绘制到图片上
        for (int i = 0; i < result.length; i++)
        {
            //Console.WriteLine(result.rects[i]);
            Cv2.Rectangle(image, result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);
            
            Cv2.Rectangle(image, new Point(result.rects[i].TopLeft.X-1, result.rects[i].TopLeft.Y - 20),
                new Point(result.rects[i].BottomRight.X, result.rects[i].TopLeft.Y), new Scalar(0, 0, 255), -1);
            
            Cv2.PutText(image, result.classes[i] + "-" + result.scores[i].ToString("0.00"),
                new Point(result.rects[i].X, result.rects[i].Y - 4),
                HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);
        }
        return image;
    }

    1. using Microsoft.ML.OnnxRuntime;
    2. using Microsoft.ML.OnnxRuntime.Tensors;
    3. using OpenCvSharp;
    4. using System;
    5. using System.Collections.Generic;
    6. using System.ComponentModel;
    7. using System.Data;
    8. using System.Drawing;
    9. using System.Linq;
    10. using System.Text;
    11. using System.Windows.Forms;
    12. using static System.Net.Mime.MediaTypeNames;
    13. namespace Onnx_Yolov8_Demo
    14. {
    15. public partial class Form1 : Form
    16. {
    17. public Form1()
    18. {
    19. InitializeComponent();
    20. }
    21. string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
    22. string image_path = "";
    23. string startupPath;
    24. string classer_path;
    25. DateTime dt1 = DateTime.Now;
    26. DateTime dt2 = DateTime.Now;
    27. string model_path;
    28. Mat image;
    29. DetectionResult result_pro;
    30. Mat result_image;
    31. SessionOptions options;
    32. InferenceSession onnx_session;
    33. Tensor<float> input_tensor;
    34. List<NamedOnnxValue> input_ontainer;
    35. IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
    36. DisposableNamedOnnxValue[] results_onnxvalue;
    37. Tensor<float> result_tensors;
    38. float[] result_array = new float[8400 * 19];
    39. float[] factors = new float[2];
    40. Result result;
    41. StringBuilder sb = new StringBuilder();
    42. private void button1_Click(object sender, EventArgs e)
    43. {
    44. OpenFileDialog ofd = new OpenFileDialog();
    45. ofd.Filter = fileFilter;
    46. if (ofd.ShowDialog() != DialogResult.OK) return;
    47. pictureBox1.Image = null;
    48. image_path = ofd.FileName;
    49. pictureBox1.Image = new Bitmap(image_path);
    50. textBox1.Text = "";
    51. image = new Mat(image_path);
    52. pictureBox2.Image = null;
    53. }
    54. private void button2_Click(object sender, EventArgs e)
    55. {
    56. if (image_path == "")
    57. {
    58. return;
    59. }
    60. // 配置图片数据
    61. image = new Mat(image_path);
    62. int max_image_length = image.Cols > image.Rows ? image.Cols : image.Rows;
    63. Mat max_image = Mat.Zeros(new OpenCvSharp.Size(max_image_length, max_image_length), MatType.CV_8UC3);
    64. Rect roi = new Rect(0, 0, image.Cols, image.Rows);
    65. image.CopyTo(new Mat(max_image, roi));
    66. factors[0] = factors[1] = (float)(max_image_length / 640.0);
    67. // 将图片转为RGB通道
    68. Mat image_rgb = new Mat();
    69. Cv2.CvtColor(max_image, image_rgb, ColorConversionCodes.BGR2RGB);
    70. Mat resize_image = new Mat();
    71. Cv2.Resize(image_rgb, resize_image, new OpenCvSharp.Size(640, 640));
    72. // 输入Tensor
    73. // input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
    74. for (int y = 0; y < resize_image.Height; y++)
    75. {
    76. for (int x = 0; x < resize_image.Width; x++)
    77. {
    78. input_tensor[0, 0, y, x] = resize_image.At<Vec3b>(y, x)[0] / 255f;
    79. input_tensor[0, 1, y, x] = resize_image.At<Vec3b>(y, x)[1] / 255f;
    80. input_tensor[0, 2, y, x] = resize_image.At<Vec3b>(y, x)[2] / 255f;
    81. }
    82. }
    83. //input_tensor 放入一个输入参数的容器,并指定名称
    84. input_ontainer.Add(NamedOnnxValue.CreateFromTensor("images", input_tensor));
    85. dt1 = DateTime.Now;
    86. //运行 Inference 并获取结果
    87. result_infer = onnx_session.Run(input_ontainer);
    88. dt2 = DateTime.Now;
    89. // 将输出结果转为DisposableNamedOnnxValue数组
    90. results_onnxvalue = result_infer.ToArray();
    91. // 读取第一个节点输出并转为Tensor数据
    92. result_tensors = results_onnxvalue[0].AsTensor<float>();
    93. result_array = result_tensors.ToArray();
    94. resize_image.Dispose();
    95. image_rgb.Dispose();
    96. result_pro = new DetectionResult(classer_path, factors);
    97. result = result_pro.process_result(result_array);
    98. result_image = result_pro.draw_result(result, image.Clone());
    99. if (!result_image.Empty())
    100. {
    101. pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
    102. sb.Clear();
    103. sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
    104. sb.AppendLine("------------------------------");
    105. for (int i = 0; i < result.length; i++)
    106. {
    107. sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
    108. , result.classes[i]
    109. , result.scores[i].ToString("0.00")
    110. , result.rects[i].TopLeft.X
    111. , result.rects[i].TopLeft.Y
    112. , result.rects[i].BottomRight.X
    113. , result.rects[i].BottomRight.Y
    114. ));
    115. }
    116. textBox1.Text = sb.ToString();
    117. }
    118. else
    119. {
    120. textBox1.Text = "无信息";
    121. }
    122. }
    123. private void Form1_Load(object sender, EventArgs e)
    124. {
    125. startupPath = System.Windows.Forms.Application.StartupPath;
    126. model_path = startupPath + "\\fruits.onnx";
    127. classer_path = startupPath + "\\lable.txt";
    128. // 创建输出会话,用于输出模型读取信息
    129. options = new SessionOptions();
    130. options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
    131. // 设置为CPU上运行
    132. options.AppendExecutionProvider_CPU(0);
    133. // 创建推理模型类,读取本地模型文件
    134. onnx_session = new InferenceSession(model_path, options);//model_path 为onnx模型文件的路径
    135. // 输入Tensor
    136. input_tensor = new DenseTensor<float>(new[] { 1, 3, 640, 640 });
    137. // 创建输入容器
    138. input_ontainer = new List<NamedOnnxValue>();
    139. }
    140. }
    141. }

    lable.txt

    1. cucumber
    2. apple
    3. kiwi
    4. banana
    5. orange
    6. coconut
    7. peach
    8. cherry
    9. pear
    10. pomegranate
    11. pineapple
    12. watermelon
    13. melon
    14. grape
    15. strawberry

    数据集

    下载 

    数据集下载

    Demo下载

  • 相关阅读:
    SpringSecurity初探(一)
    【Rust 笔记】15-字符串与文本(下)
    js中this的原理详解(web前端开发javascript语法基础)
    动态规划算法学习二:最长公共子序列
    分类预测 | Matlab实现RBF-Adaboost多特征分类预测
    三、Helm3常见命令
    【JAVA入门】网络编程
    Elasticsearch:使用 Low Level Java 客户端来创建连接 - Elastic Stack 8.x
    Fluent表达式应用案例
    【nlp】1.3 文本数据分析(标签数量分布、句子长度分布、词频统计与关键词词云)
  • 原文地址:https://blog.csdn.net/lw112190/article/details/133160256