本文是LLM系列文章,针对《A Survey on Fairness in Large Language Models》的翻译。
大型语言模型(LLM)已经显示出强大的性能和发展前景,并在现实世界中得到了广泛的部署。然而,LLM可以从未处理的训练数据中捕捉社会偏见,并将这些偏见传播到下游任务。不公平的LLM制度具有不良的社会影响和潜在的危害。在本文中,我们对LLM中的公平性的相关研究进行了全面的综述。首先,对于中等规模LLM,我们分别从内在偏差和外在偏差的角度介绍了评估指标和去偏方法。然后,对于大规模LLM,我们介绍了最近的公平性研究,包括公平性评估、偏差原因和去偏差方法。最后,我们讨论并深入了解LLM公平发展的挑战和未来方向。