• Linux内核链表(list)移植到任意平台


    一、前言

    linux内核链表在include/linux/list.h文件中,内核中实现的链表比较简洁,实用性很强,因此想把它单独移植出来使用。

    内核中的代码只能使用gnuc编译器编译,stdc编译器编译是会报错的,主要是因为typeof这个宏是gnuc特有的扩展,stdc中没有此扩展。

    本篇文章就是来解决这个问题的,移植得到一个在stdc下运行的list,方便其他平台使用。

    二、移植过程

    • 1、将include/linux/list.h单独扣出来,保存为list.h文件。

    • 2、修改头文件,并添加list_head的定义,还有部分宏定义,以下为添加部分:

      #include 
      #include 
      
      struct list_head {
          struct list_head *next, *prev;
      };
      
      struct hlist_head {
          struct hlist_node *first;
      };
      
      struct hlist_node {
          struct hlist_node *next, **pprev;
      };
      
      #define WRITE_ONCE(var, val)    ((var) = (val))
      #define READ_ONCE(var)          (var)
      
      /* container_of */
      #ifndef offsetof
      #define offsetof(type, member)  (size_t)(&((type*)0)->member)
      #endif
      #define container_of(ptr, type, member)     ((type *)((char *)(ptr) - offsetof(type, member)))
      
      • 1
      • 2
      • 3
      • 4
      • 5
      • 6
      • 7
      • 8
      • 9
      • 10
      • 11
      • 12
      • 13
      • 14
      • 15
      • 16
      • 17
      • 18
      • 19
      • 20
      • 21
      • 22
      • 23

      修改并添加了以下宏,改完后可以在stdc下编译:

      • 1、WRITE_ONCEREAD_ONCE
      • 2、container_of,去除了typeof的使用。
    • 3、删除所有使用typeof的定义,将以下所有使用到typeof的代码删除:

    /**
     * list_next_entry - get the next element in list
     * @pos:	the type * to cursor
     * @member:	the name of the list_head within the struct.
     */
    #define list_next_entry(pos, member) \
    	list_entry((pos)->member.next, typeof(*(pos)), member)
    
    /**
     * list_prev_entry - get the prev element in list
     * @pos:	the type * to cursor
     * @member:	the name of the list_head within the struct.
     */
    #define list_prev_entry(pos, member) \
    	list_entry((pos)->member.prev, typeof(*(pos)), member)
    
    /**
     * list_for_each_entry	-	iterate over list of given type
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     */
    #define list_for_each_entry(pos, head, member)				\
    	for (pos = list_first_entry(head, typeof(*pos), member);	\
    	     &pos->member != (head);					\
    	     pos = list_next_entry(pos, member))
    
    /**
     * list_for_each_entry_reverse - iterate backwards over list of given type.
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     */
    #define list_for_each_entry_reverse(pos, head, member)			\
    	for (pos = list_last_entry(head, typeof(*pos), member);		\
    	     &pos->member != (head); 					\
    	     pos = list_prev_entry(pos, member))
    
    /**
     * list_prepare_entry - prepare a pos entry for use in list_for_each_entry_continue()
     * @pos:	the type * to use as a start point
     * @head:	the head of the list
     * @member:	the name of the list_head within the struct.
     *
     * Prepares a pos entry for use as a start point in list_for_each_entry_continue().
     */
    #define list_prepare_entry(pos, head, member) \
    	((pos) ? : list_entry(head, typeof(*pos), member))
    
    /**
     * list_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @pos:	the type * to use as a loop cursor.
     * @n:		another type * to use as temporary storage
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     */
    #define list_for_each_entry_safe(pos, n, head, member)			\
    	for (pos = list_first_entry(head, typeof(*pos), member),	\
    		n = list_next_entry(pos, member);			\
    	     &pos->member != (head); 					\
    	     pos = n, n = list_next_entry(n, member))
    
    /**
     * list_for_each_entry_safe_reverse - iterate backwards over list safe against removal
     * @pos:	the type * to use as a loop cursor.
     * @n:		another type * to use as temporary storage
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Iterate backwards over list of given type, safe against removal
     * of list entry.
     */
    #define list_for_each_entry_safe_reverse(pos, n, head, member)		\
    	for (pos = list_last_entry(head, typeof(*pos), member),		\
    		n = list_prev_entry(pos, member);			\
    	     &pos->member != (head); 					\
    	     pos = n, n = list_prev_entry(n, member))
    
    #define hlist_entry_safe(ptr, type, member) \
    	({ typeof(ptr) ____ptr = (ptr); \
    	   ____ptr ? hlist_entry(____ptr, type, member) : NULL; \
    	})
    
    /**
     * hlist_for_each_entry	- iterate over list of given type
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry(pos, head, member)				\
    	for (pos = hlist_entry_safe((head)->first, typeof(*(pos)), member);\
    	     pos;							\
    	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
    
    /**
     * hlist_for_each_entry_continue - iterate over a hlist continuing after current point
     * @pos:	the type * to use as a loop cursor.
     * @member:	the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_continue(pos, member)			\
    	for (pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member);\
    	     pos;							\
    	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
    
    /**
     * hlist_for_each_entry_from - iterate over a hlist continuing from current point
     * @pos:	the type * to use as a loop cursor.
     * @member:	the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_from(pos, member)				\
    	for (; pos;							\
    	     pos = hlist_entry_safe((pos)->member.next, typeof(*(pos)), member))
    
    /**
     * hlist_for_each_entry_safe - iterate over list of given type safe against removal of list entry
     * @pos:	the type * to use as a loop cursor.
     * @n:		another &struct hlist_node to use as temporary storage
     * @head:	the head for your list.
     * @member:	the name of the hlist_node within the struct.
     */
    #define hlist_for_each_entry_safe(pos, n, head, member) 		\
    	for (pos = hlist_entry_safe((head)->first, typeof(*pos), member);\
    	     pos && ({ n = pos->member.next; 1; });			\
    	     pos = hlist_entry_safe(n, typeof(*pos), member))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124

    至此,移植完成。

    三、移植好的list.h文件

    /* SPDX-License-Identifier: GPL-2.0 */
    #ifndef _LINUX_LIST_H
    #define _LINUX_LIST_H
    
    #include 
    #include 
    
    struct list_head {
        struct list_head *next, *prev;
    };
    
    struct hlist_head {
        struct hlist_node *first;
    };
    
    struct hlist_node {
        struct hlist_node *next, **pprev;
    };
    
    #define WRITE_ONCE(var, val)    ((var) = (val))
    #define READ_ONCE(var)          (var)
    
    /* container_of */
    #ifndef offsetof
    #define offsetof(type, member)  (size_t)(&((type*)0)->member)
    #endif
    #define container_of(ptr, type, member)     ((type *)((char *)(ptr) - offsetof(type, member)))
    
    /*
     * Circular doubly linked list implementation.
     *
     * Some of the internal functions ("__xxx") are useful when
     * manipulating whole lists rather than single entries, as
     * sometimes we already know the next/prev entries and we can
     * generate better code by using them directly rather than
     * using the generic single-entry routines.
     */
    
    #define LIST_HEAD_INIT(name) { &(name), &(name) }
    
    #define LIST_HEAD(name) \
    	struct list_head name = LIST_HEAD_INIT(name)
    
    /**
     * INIT_LIST_HEAD - Initialize a list_head structure
     * @list: list_head structure to be initialized.
     *
     * Initializes the list_head to point to itself.  If it is a list header,
     * the result is an empty list.
     */
    static inline void INIT_LIST_HEAD(struct list_head *list)
    {
    	WRITE_ONCE(list->next, list);
    	list->prev = list;
    }
    
    static inline bool __list_add_valid(struct list_head *new,
    				struct list_head *prev,
    				struct list_head *next)
    {
    	return true;
    }
    static inline bool __list_del_entry_valid(struct list_head *entry)
    {
    	return true;
    }
    
    /*
     * Insert a new entry between two known consecutive entries.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    static inline void __list_add(struct list_head *new,
    			      struct list_head *prev,
    			      struct list_head *next)
    {
    	if (!__list_add_valid(new, prev, next))
    		return;
    
    	next->prev = new;
    	new->next = next;
    	new->prev = prev;
    	WRITE_ONCE(prev->next, new);
    }
    
    /**
     * list_add - add a new entry
     * @new: new entry to be added
     * @head: list head to add it after
     *
     * Insert a new entry after the specified head.
     * This is good for implementing stacks.
     */
    static inline void list_add(struct list_head *new, struct list_head *head)
    {
    	__list_add(new, head, head->next);
    }
    
    
    /**
     * list_add_tail - add a new entry
     * @new: new entry to be added
     * @head: list head to add it before
     *
     * Insert a new entry before the specified head.
     * This is useful for implementing queues.
     */
    static inline void list_add_tail(struct list_head *new, struct list_head *head)
    {
    	__list_add(new, head->prev, head);
    }
    
    /*
     * Delete a list entry by making the prev/next entries
     * point to each other.
     *
     * This is only for internal list manipulation where we know
     * the prev/next entries already!
     */
    static inline void __list_del(struct list_head * prev, struct list_head * next)
    {
    	next->prev = prev;
    	WRITE_ONCE(prev->next, next);
    }
    
    /*
     * Delete a list entry and clear the 'prev' pointer.
     *
     * This is a special-purpose list clearing method used in the networking code
     * for lists allocated as per-cpu, where we don't want to incur the extra
     * WRITE_ONCE() overhead of a regular list_del_init(). The code that uses this
     * needs to check the node 'prev' pointer instead of calling list_empty().
     */
    static inline void __list_del_clearprev(struct list_head *entry)
    {
    	__list_del(entry->prev, entry->next);
    	entry->prev = NULL;
    }
    
    static inline void __list_del_entry(struct list_head *entry)
    {
    	if (!__list_del_entry_valid(entry))
    		return;
    
    	__list_del(entry->prev, entry->next);
    }
    
    /**
     * list_del - deletes entry from list.
     * @entry: the element to delete from the list.
     * Note: list_empty() on entry does not return true after this, the entry is
     * in an undefined state.
     */
    static inline void list_del(struct list_head *entry)
    {
    	__list_del_entry(entry);
    	entry->next = NULL;
    	entry->prev = NULL;
    }
    
    /**
     * list_replace - replace old entry by new one
     * @old : the element to be replaced
     * @new : the new element to insert
     *
     * If @old was empty, it will be overwritten.
     */
    static inline void list_replace(struct list_head *old,
    				struct list_head *new)
    {
    	new->next = old->next;
    	new->next->prev = new;
    	new->prev = old->prev;
    	new->prev->next = new;
    }
    
    /**
     * list_replace_init - replace old entry by new one and initialize the old one
     * @old : the element to be replaced
     * @new : the new element to insert
     *
     * If @old was empty, it will be overwritten.
     */
    static inline void list_replace_init(struct list_head *old,
    				     struct list_head *new)
    {
    	list_replace(old, new);
    	INIT_LIST_HEAD(old);
    }
    
    /**
     * list_swap - replace entry1 with entry2 and re-add entry1 at entry2's position
     * @entry1: the location to place entry2
     * @entry2: the location to place entry1
     */
    static inline void list_swap(struct list_head *entry1,
    			     struct list_head *entry2)
    {
    	struct list_head *pos = entry2->prev;
    
    	list_del(entry2);
    	list_replace(entry1, entry2);
    	if (pos == entry1)
    		pos = entry2;
    	list_add(entry1, pos);
    }
    
    /**
     * list_del_init - deletes entry from list and reinitialize it.
     * @entry: the element to delete from the list.
     */
    static inline void list_del_init(struct list_head *entry)
    {
    	__list_del_entry(entry);
    	INIT_LIST_HEAD(entry);
    }
    
    /**
     * list_move - delete from one list and add as another's head
     * @list: the entry to move
     * @head: the head that will precede our entry
     */
    static inline void list_move(struct list_head *list, struct list_head *head)
    {
    	__list_del_entry(list);
    	list_add(list, head);
    }
    
    /**
     * list_move_tail - delete from one list and add as another's tail
     * @list: the entry to move
     * @head: the head that will follow our entry
     */
    static inline void list_move_tail(struct list_head *list,
    				  struct list_head *head)
    {
    	__list_del_entry(list);
    	list_add_tail(list, head);
    }
    
    /**
     * list_bulk_move_tail - move a subsection of a list to its tail
     * @head: the head that will follow our entry
     * @first: first entry to move
     * @last: last entry to move, can be the same as first
     *
     * Move all entries between @first and including @last before @head.
     * All three entries must belong to the same linked list.
     */
    static inline void list_bulk_move_tail(struct list_head *head,
    				       struct list_head *first,
    				       struct list_head *last)
    {
    	first->prev->next = last->next;
    	last->next->prev = first->prev;
    
    	head->prev->next = first;
    	first->prev = head->prev;
    
    	last->next = head;
    	head->prev = last;
    }
    
    /**
     * list_is_first -- tests whether @list is the first entry in list @head
     * @list: the entry to test
     * @head: the head of the list
     */
    static inline int list_is_first(const struct list_head *list, const struct list_head *head)
    {
    	return list->prev == head;
    }
    
    /**
     * list_is_last - tests whether @list is the last entry in list @head
     * @list: the entry to test
     * @head: the head of the list
     */
    static inline int list_is_last(const struct list_head *list, const struct list_head *head)
    {
    	return list->next == head;
    }
    
    /**
     * list_is_head - tests whether @list is the list @head
     * @list: the entry to test
     * @head: the head of the list
     */
    static inline int list_is_head(const struct list_head *list, const struct list_head *head)
    {
    	return list == head;
    }
    
    /**
     * list_empty - tests whether a list is empty
     * @head: the list to test.
     */
    static inline int list_empty(const struct list_head *head)
    {
    	return READ_ONCE(head->next) == head;
    }
    
    /**
     * list_del_init_careful - deletes entry from list and reinitialize it.
     * @entry: the element to delete from the list.
     *
     * This is the same as list_del_init(), except designed to be used
     * together with list_empty_careful() in a way to guarantee ordering
     * of other memory operations.
     *
     * Any memory operations done before a list_del_init_careful() are
     * guaranteed to be visible after a list_empty_careful() test.
     */
    static inline void list_del_init_careful(struct list_head *entry)
    {
    	__list_del_entry(entry);
    	entry->prev = entry;
    	WRITE_ONCE(entry->next, entry);
    }
    
    /**
     * list_empty_careful - tests whether a list is empty and not being modified
     * @head: the list to test
     *
     * Description:
     * tests whether a list is empty _and_ checks that no other CPU might be
     * in the process of modifying either member (next or prev)
     *
     * NOTE: using list_empty_careful() without synchronization
     * can only be safe if the only activity that can happen
     * to the list entry is list_del_init(). Eg. it cannot be used
     * if another CPU could re-list_add() it.
     */
    static inline int list_empty_careful(const struct list_head *head)
    {
    	struct list_head *next = READ_ONCE(head->next);
    	return list_is_head(next, head) && (next == head->prev);
    }
    
    /**
     * list_rotate_left - rotate the list to the left
     * @head: the head of the list
     */
    static inline void list_rotate_left(struct list_head *head)
    {
    	struct list_head *first;
    
    	if (!list_empty(head)) {
    		first = head->next;
    		list_move_tail(first, head);
    	}
    }
    
    /**
     * list_rotate_to_front() - Rotate list to specific item.
     * @list: The desired new front of the list.
     * @head: The head of the list.
     *
     * Rotates list so that @list becomes the new front of the list.
     */
    static inline void list_rotate_to_front(struct list_head *list,
    					struct list_head *head)
    {
    	/*
    	 * Deletes the list head from the list denoted by @head and
    	 * places it as the tail of @list, this effectively rotates the
    	 * list so that @list is at the front.
    	 */
    	list_move_tail(head, list);
    }
    
    /**
     * list_is_singular - tests whether a list has just one entry.
     * @head: the list to test.
     */
    static inline int list_is_singular(const struct list_head *head)
    {
    	return !list_empty(head) && (head->next == head->prev);
    }
    
    static inline void __list_cut_position(struct list_head *list,
    		struct list_head *head, struct list_head *entry)
    {
    	struct list_head *new_first = entry->next;
    	list->next = head->next;
    	list->next->prev = list;
    	list->prev = entry;
    	entry->next = list;
    	head->next = new_first;
    	new_first->prev = head;
    }
    
    /**
     * list_cut_position - cut a list into two
     * @list: a new list to add all removed entries
     * @head: a list with entries
     * @entry: an entry within head, could be the head itself
     *	and if so we won't cut the list
     *
     * This helper moves the initial part of @head, up to and
     * including @entry, from @head to @list. You should
     * pass on @entry an element you know is on @head. @list
     * should be an empty list or a list you do not care about
     * losing its data.
     *
     */
    static inline void list_cut_position(struct list_head *list,
    		struct list_head *head, struct list_head *entry)
    {
    	if (list_empty(head))
    		return;
    	if (list_is_singular(head) && !list_is_head(entry, head) && (entry != head->next))
    		return;
    	if (list_is_head(entry, head))
    		INIT_LIST_HEAD(list);
    	else
    		__list_cut_position(list, head, entry);
    }
    
    /**
     * list_cut_before - cut a list into two, before given entry
     * @list: a new list to add all removed entries
     * @head: a list with entries
     * @entry: an entry within head, could be the head itself
     *
     * This helper moves the initial part of @head, up to but
     * excluding @entry, from @head to @list.  You should pass
     * in @entry an element you know is on @head.  @list should
     * be an empty list or a list you do not care about losing
     * its data.
     * If @entry == @head, all entries on @head are moved to
     * @list.
     */
    static inline void list_cut_before(struct list_head *list,
    				   struct list_head *head,
    				   struct list_head *entry)
    {
    	if (head->next == entry) {
    		INIT_LIST_HEAD(list);
    		return;
    	}
    	list->next = head->next;
    	list->next->prev = list;
    	list->prev = entry->prev;
    	list->prev->next = list;
    	head->next = entry;
    	entry->prev = head;
    }
    
    static inline void __list_splice(const struct list_head *list,
    				 struct list_head *prev,
    				 struct list_head *next)
    {
    	struct list_head *first = list->next;
    	struct list_head *last = list->prev;
    
    	first->prev = prev;
    	prev->next = first;
    
    	last->next = next;
    	next->prev = last;
    }
    
    /**
     * list_splice - join two lists, this is designed for stacks
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice(const struct list_head *list,
    				struct list_head *head)
    {
    	if (!list_empty(list))
    		__list_splice(list, head, head->next);
    }
    
    /**
     * list_splice_tail - join two lists, each list being a queue
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     */
    static inline void list_splice_tail(struct list_head *list,
    				struct list_head *head)
    {
    	if (!list_empty(list))
    		__list_splice(list, head->prev, head);
    }
    
    /**
     * list_splice_init - join two lists and reinitialise the emptied list.
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * The list at @list is reinitialised
     */
    static inline void list_splice_init(struct list_head *list,
    				    struct list_head *head)
    {
    	if (!list_empty(list)) {
    		__list_splice(list, head, head->next);
    		INIT_LIST_HEAD(list);
    	}
    }
    
    /**
     * list_splice_tail_init - join two lists and reinitialise the emptied list
     * @list: the new list to add.
     * @head: the place to add it in the first list.
     *
     * Each of the lists is a queue.
     * The list at @list is reinitialised
     */
    static inline void list_splice_tail_init(struct list_head *list,
    					 struct list_head *head)
    {
    	if (!list_empty(list)) {
    		__list_splice(list, head->prev, head);
    		INIT_LIST_HEAD(list);
    	}
    }
    
    /**
     * list_entry - get the struct for this entry
     * @ptr:	the &struct list_head pointer.
     * @type:	the type of the struct this is embedded in.
     * @member:	the name of the list_head within the struct.
     */
    #define list_entry(ptr, type, member) \
    	container_of(ptr, type, member)
    
    /**
     * list_first_entry - get the first element from a list
     * @ptr:	the list head to take the element from.
     * @type:	the type of the struct this is embedded in.
     * @member:	the name of the list_head within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_first_entry(ptr, type, member) \
    	list_entry((ptr)->next, type, member)
    
    /**
     * list_last_entry - get the last element from a list
     * @ptr:	the list head to take the element from.
     * @type:	the type of the struct this is embedded in.
     * @member:	the name of the list_head within the struct.
     *
     * Note, that list is expected to be not empty.
     */
    #define list_last_entry(ptr, type, member) \
    	list_entry((ptr)->prev, type, member)
    
    /**
     * list_first_entry_or_null - get the first element from a list
     * @ptr:	the list head to take the element from.
     * @type:	the type of the struct this is embedded in.
     * @member:	the name of the list_head within the struct.
     *
     * Note that if the list is empty, it returns NULL.
     */
    #define list_first_entry_or_null(ptr, type, member) ({ \
    	struct list_head *head__ = (ptr); \
    	struct list_head *pos__ = READ_ONCE(head__->next); \
    	pos__ != head__ ? list_entry(pos__, type, member) : NULL; \
    })
    
    /**
     * list_for_each	-	iterate over a list
     * @pos:	the &struct list_head to use as a loop cursor.
     * @head:	the head for your list.
     */
    #define list_for_each(pos, head) \
    	for (pos = (head)->next; !list_is_head(pos, (head)); pos = pos->next)
    
    /**
     * list_for_each_continue - continue iteration over a list
     * @pos:	the &struct list_head to use as a loop cursor.
     * @head:	the head for your list.
     *
     * Continue to iterate over a list, continuing after the current position.
     */
    #define list_for_each_continue(pos, head) \
    	for (pos = pos->next; !list_is_head(pos, (head)); pos = pos->next)
    
    /**
     * list_for_each_prev	-	iterate over a list backwards
     * @pos:	the &struct list_head to use as a loop cursor.
     * @head:	the head for your list.
     */
    #define list_for_each_prev(pos, head) \
    	for (pos = (head)->prev; !list_is_head(pos, (head)); pos = pos->prev)
    
    /**
     * list_for_each_safe - iterate over a list safe against removal of list entry
     * @pos:	the &struct list_head to use as a loop cursor.
     * @n:		another &struct list_head to use as temporary storage
     * @head:	the head for your list.
     */
    #define list_for_each_safe(pos, n, head) \
    	for (pos = (head)->next, n = pos->next; \
    	     !list_is_head(pos, (head)); \
    	     pos = n, n = pos->next)
    
    /**
     * list_for_each_prev_safe - iterate over a list backwards safe against removal of list entry
     * @pos:	the &struct list_head to use as a loop cursor.
     * @n:		another &struct list_head to use as temporary storage
     * @head:	the head for your list.
     */
    #define list_for_each_prev_safe(pos, n, head) \
    	for (pos = (head)->prev, n = pos->prev; \
    	     !list_is_head(pos, (head)); \
    	     pos = n, n = pos->prev)
    
    /**
     * list_entry_is_head - test if the entry points to the head of the list
     * @pos:	the type * to cursor
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     */
    #define list_entry_is_head(pos, head, member)				\
    	(&pos->member == (head))
    
    /**
     * list_for_each_entry_continue - continue iteration over list of given type
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Continue to iterate over list of given type, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue(pos, head, member) 		\
    	for (pos = list_next_entry(pos, member);			\
    	     !list_entry_is_head(pos, head, member);			\
    	     pos = list_next_entry(pos, member))
    
    /**
     * list_for_each_entry_continue_reverse - iterate backwards from the given point
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Start to iterate over list of given type backwards, continuing after
     * the current position.
     */
    #define list_for_each_entry_continue_reverse(pos, head, member)		\
    	for (pos = list_prev_entry(pos, member);			\
    	     !list_entry_is_head(pos, head, member);			\
    	     pos = list_prev_entry(pos, member))
    
    /**
     * list_for_each_entry_from - iterate over list of given type from the current point
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Iterate over list of given type, continuing from current position.
     */
    #define list_for_each_entry_from(pos, head, member) 			\
    	for (; !list_entry_is_head(pos, head, member);			\
    	     pos = list_next_entry(pos, member))
    
    /**
     * list_for_each_entry_from_reverse - iterate backwards over list of given type
     *                                    from the current point
     * @pos:	the type * to use as a loop cursor.
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Iterate backwards over list of given type, continuing from current position.
     */
    #define list_for_each_entry_from_reverse(pos, head, member)		\
    	for (; !list_entry_is_head(pos, head, member);			\
    	     pos = list_prev_entry(pos, member))
    
    /**
     * list_for_each_entry_safe_continue - continue list iteration safe against removal
     * @pos:	the type * to use as a loop cursor.
     * @n:		another type * to use as temporary storage
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Iterate over list of given type, continuing after current point,
     * safe against removal of list entry.
     */
    #define list_for_each_entry_safe_continue(pos, n, head, member) 		\
    	for (pos = list_next_entry(pos, member), 				\
    		n = list_next_entry(pos, member);				\
    	     !list_entry_is_head(pos, head, member);				\
    	     pos = n, n = list_next_entry(n, member))
    
    /**
     * list_for_each_entry_safe_from - iterate over list from current point safe against removal
     * @pos:	the type * to use as a loop cursor.
     * @n:		another type * to use as temporary storage
     * @head:	the head for your list.
     * @member:	the name of the list_head within the struct.
     *
     * Iterate over list of given type from current point, safe against
     * removal of list entry.
     */
    #define list_for_each_entry_safe_from(pos, n, head, member) 			\
    	for (n = list_next_entry(pos, member);					\
    	     !list_entry_is_head(pos, head, member);				\
    	     pos = n, n = list_next_entry(n, member))
    
    /**
     * list_safe_reset_next - reset a stale list_for_each_entry_safe loop
     * @pos:	the loop cursor used in the list_for_each_entry_safe loop
     * @n:		temporary storage used in list_for_each_entry_safe
     * @member:	the name of the list_head within the struct.
     *
     * list_safe_reset_next is not safe to use in general if the list may be
     * modified concurrently (eg. the lock is dropped in the loop body). An
     * exception to this is if the cursor element (pos) is pinned in the list,
     * and list_safe_reset_next is called after re-taking the lock and before
     * completing the current iteration of the loop body.
     */
    #define list_safe_reset_next(pos, n, member)				\
    	n = list_next_entry(pos, member)
    
    /*
     * Double linked lists with a single pointer list head.
     * Mostly useful for hash tables where the two pointer list head is
     * too wasteful.
     * You lose the ability to access the tail in O(1).
     */
    
    #define HLIST_HEAD_INIT { .first = NULL }
    #define HLIST_HEAD(name) struct hlist_head name = {  .first = NULL }
    #define INIT_HLIST_HEAD(ptr) ((ptr)->first = NULL)
    static inline void INIT_HLIST_NODE(struct hlist_node *h)
    {
    	h->next = NULL;
    	h->pprev = NULL;
    }
    
    /**
     * hlist_unhashed - Has node been removed from list and reinitialized?
     * @h: Node to be checked
     *
     * Not that not all removal functions will leave a node in unhashed
     * state.  For example, hlist_nulls_del_init_rcu() does leave the
     * node in unhashed state, but hlist_nulls_del() does not.
     */
    static inline int hlist_unhashed(const struct hlist_node *h)
    {
    	return !h->pprev;
    }
    
    /**
     * hlist_unhashed_lockless - Version of hlist_unhashed for lockless use
     * @h: Node to be checked
     *
     * This variant of hlist_unhashed() must be used in lockless contexts
     * to avoid potential load-tearing.  The READ_ONCE() is paired with the
     * various WRITE_ONCE() in hlist helpers that are defined below.
     */
    static inline int hlist_unhashed_lockless(const struct hlist_node *h)
    {
    	return !READ_ONCE(h->pprev);
    }
    
    /**
     * hlist_empty - Is the specified hlist_head structure an empty hlist?
     * @h: Structure to check.
     */
    static inline int hlist_empty(const struct hlist_head *h)
    {
    	return !READ_ONCE(h->first);
    }
    
    static inline void __hlist_del(struct hlist_node *n)
    {
    	struct hlist_node *next = n->next;
    	struct hlist_node **pprev = n->pprev;
    
    	WRITE_ONCE(*pprev, next);
    	if (next)
    		WRITE_ONCE(next->pprev, pprev);
    }
    
    /**
     * hlist_del - Delete the specified hlist_node from its list
     * @n: Node to delete.
     *
     * Note that this function leaves the node in hashed state.  Use
     * hlist_del_init() or similar instead to unhash @n.
     */
    static inline void hlist_del(struct hlist_node *n)
    {
    	__hlist_del(n);
    	n->next = NULL;
    	n->pprev = NULL;
    }
    
    /**
     * hlist_del_init - Delete the specified hlist_node from its list and initialize
     * @n: Node to delete.
     *
     * Note that this function leaves the node in unhashed state.
     */
    static inline void hlist_del_init(struct hlist_node *n)
    {
    	if (!hlist_unhashed(n)) {
    		__hlist_del(n);
    		INIT_HLIST_NODE(n);
    	}
    }
    
    /**
     * hlist_add_head - add a new entry at the beginning of the hlist
     * @n: new entry to be added
     * @h: hlist head to add it after
     *
     * Insert a new entry after the specified head.
     * This is good for implementing stacks.
     */
    static inline void hlist_add_head(struct hlist_node *n, struct hlist_head *h)
    {
    	struct hlist_node *first = h->first;
    	WRITE_ONCE(n->next, first);
    	if (first)
    		WRITE_ONCE(first->pprev, &n->next);
    	WRITE_ONCE(h->first, n);
    	WRITE_ONCE(n->pprev, &h->first);
    }
    
    /**
     * hlist_add_before - add a new entry before the one specified
     * @n: new entry to be added
     * @next: hlist node to add it before, which must be non-NULL
     */
    static inline void hlist_add_before(struct hlist_node *n,
    				    struct hlist_node *next)
    {
    	WRITE_ONCE(n->pprev, next->pprev);
    	WRITE_ONCE(n->next, next);
    	WRITE_ONCE(next->pprev, &n->next);
    	WRITE_ONCE(*(n->pprev), n);
    }
    
    /**
     * hlist_add_behind - add a new entry after the one specified
     * @n: new entry to be added
     * @prev: hlist node to add it after, which must be non-NULL
     */
    static inline void hlist_add_behind(struct hlist_node *n,
    				    struct hlist_node *prev)
    {
    	WRITE_ONCE(n->next, prev->next);
    	WRITE_ONCE(prev->next, n);
    	WRITE_ONCE(n->pprev, &prev->next);
    
    	if (n->next)
    		WRITE_ONCE(n->next->pprev, &n->next);
    }
    
    /**
     * hlist_add_fake - create a fake hlist consisting of a single headless node
     * @n: Node to make a fake list out of
     *
     * This makes @n appear to be its own predecessor on a headless hlist.
     * The point of this is to allow things like hlist_del() to work correctly
     * in cases where there is no list.
     */
    static inline void hlist_add_fake(struct hlist_node *n)
    {
    	n->pprev = &n->next;
    }
    
    /**
     * hlist_fake: Is this node a fake hlist?
     * @h: Node to check for being a self-referential fake hlist.
     */
    static inline bool hlist_fake(struct hlist_node *h)
    {
    	return h->pprev == &h->next;
    }
    
    /**
     * hlist_is_singular_node - is node the only element of the specified hlist?
     * @n: Node to check for singularity.
     * @h: Header for potentially singular list.
     *
     * Check whether the node is the only node of the head without
     * accessing head, thus avoiding unnecessary cache misses.
     */
    static inline bool
    hlist_is_singular_node(struct hlist_node *n, struct hlist_head *h)
    {
    	return !n->next && n->pprev == &h->first;
    }
    
    /**
     * hlist_move_list - Move an hlist
     * @old: hlist_head for old list.
     * @new: hlist_head for new list.
     *
     * Move a list from one list head to another. Fixup the pprev
     * reference of the first entry if it exists.
     */
    static inline void hlist_move_list(struct hlist_head *old,
    				   struct hlist_head *new)
    {
    	new->first = old->first;
    	if (new->first)
    		new->first->pprev = &new->first;
    	old->first = NULL;
    }
    
    #define hlist_entry(ptr, type, member) container_of(ptr,type,member)
    
    #define hlist_for_each(pos, head) \
    	for (pos = (head)->first; pos ; pos = pos->next)
    
    #define hlist_for_each_safe(pos, n, head) \
    	for (pos = (head)->first; pos && ({ n = pos->next; 1; }); \
    	     pos = n)
    
    #endif
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676
    • 677
    • 678
    • 679
    • 680
    • 681
    • 682
    • 683
    • 684
    • 685
    • 686
    • 687
    • 688
    • 689
    • 690
    • 691
    • 692
    • 693
    • 694
    • 695
    • 696
    • 697
    • 698
    • 699
    • 700
    • 701
    • 702
    • 703
    • 704
    • 705
    • 706
    • 707
    • 708
    • 709
    • 710
    • 711
    • 712
    • 713
    • 714
    • 715
    • 716
    • 717
    • 718
    • 719
    • 720
    • 721
    • 722
    • 723
    • 724
    • 725
    • 726
    • 727
    • 728
    • 729
    • 730
    • 731
    • 732
    • 733
    • 734
    • 735
    • 736
    • 737
    • 738
    • 739
    • 740
    • 741
    • 742
    • 743
    • 744
    • 745
    • 746
    • 747
    • 748
    • 749
    • 750
    • 751
    • 752
    • 753
    • 754
    • 755
    • 756
    • 757
    • 758
    • 759
    • 760
    • 761
    • 762
    • 763
    • 764
    • 765
    • 766
    • 767
    • 768
    • 769
    • 770
    • 771
    • 772
    • 773
    • 774
    • 775
    • 776
    • 777
    • 778
    • 779
    • 780
    • 781
    • 782
    • 783
    • 784
    • 785
    • 786
    • 787
    • 788
    • 789
    • 790
    • 791
    • 792
    • 793
    • 794
    • 795
    • 796
    • 797
    • 798
    • 799
    • 800
    • 801
    • 802
    • 803
    • 804
    • 805
    • 806
    • 807
    • 808
    • 809
    • 810
    • 811
    • 812
    • 813
    • 814
    • 815
    • 816
    • 817
    • 818
    • 819
    • 820
    • 821
    • 822
    • 823
    • 824
    • 825
    • 826
    • 827
    • 828
    • 829
    • 830
    • 831
    • 832
    • 833
    • 834
    • 835
    • 836
    • 837
    • 838
    • 839
    • 840
    • 841
    • 842
    • 843
    • 844
    • 845
    • 846
    • 847
    • 848
    • 849
    • 850
    • 851
    • 852
    • 853
    • 854
    • 855
    • 856
    • 857
    • 858
    • 859
    • 860
    • 861
    • 862
    • 863
    • 864
    • 865
    • 866
    • 867
    • 868
    • 869
    • 870
    • 871
    • 872
    • 873
    • 874
    • 875
    • 876
    • 877
    • 878
    • 879
    • 880
    • 881
    • 882
    • 883
    • 884
    • 885
    • 886
    • 887
    • 888
    • 889
    • 890
    • 891
    • 892
    • 893
    • 894
    • 895
    • 896
    • 897
    • 898
    • 899
    • 900
    • 901
    • 902
    • 903
    • 904
    • 905
    • 906
    • 907
    • 908
    • 909
    • 910
    • 911
    • 912
    • 913
    • 914
    • 915
    • 916
    • 917
    • 918
    • 919
    • 920
    • 921
    • 922

    四、使用方法

    • 4.1、初始化链表
    struct mailbox_data {
        u8 chan;
        u32 cmd;
        u32 data;
        int (*func)(struct mailbox_data *mailbox);
        struct list_head head;
    };
    
    LIST_HEAD(mailbox_list_head);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    struct mailbox_data {
        u8 chan;
        u32 cmd;
        u32 data;
        int (*func)(struct mailbox_data *mailbox);
        struct list_head head;
    };
    
    struct mailbox_head mailbox_list_head;
    INIT_LIST_HEAD(&mailbox_list_head);
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 4.2、添加链表
    struct mailbox_data* mailbox = calloc(1, sizeof(*mailbox));
    list_add_tail(&mailbox->head, &mailbox_list_head);
    
    • 1
    • 2
    • 4.3、遍历链表
    struct list_head* pos = NULL;
    struct list_head* pt = NULL;
    struct mailbox_data* mailbox = NULL;
       
    list_for_each_safe(pos, pt, &mailbox_list_head) {
    	mailbox = list_entry(pos, struct mailbox_data, head);
    	if (mailbox->func) {
    		mailbox->func(mailbox);
    	}
    	list_del(&mailbox ->head);
    	free(mailbox);
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 4.4、删除链表
    list_del(&mailbox ->head);
    
    • 1
  • 相关阅读:
    《痞子衡嵌入式半月刊》 第 93 期
    JS 实现鼠标框选(页面选择)时返回对应的代码或文本内容
    LeetCode刷题之分隔链表(图解➕代码)
    GIS前端-地图标绘与动画
    C语言--每日五道选择题--Day21
    Apollo配置中心-手把手教你搭建Apollo配置中心运行环境
    MySQL数据库管理
    【Python21天学习挑战赛】文件读写操作
    HDLBits-Edgecapture
    html——常用标签
  • 原文地址:https://blog.csdn.net/weixin_40837318/article/details/133139291