目录
Python是一种高级编程语言,由Guido van Rossum于1991年创建。它以简洁、易读的语法而闻名,并且具有强大的功能和广泛的应用领域。Python具有丰富的标准库和第三方库,可以用于开发各种类型的应用程序,包括Web开发、数据分析、人工智能、科学计算、自动化脚本等。
Python本身是一种伟大的通用编程语言,在一些流行的库(numpy,scipy,matplotlib)的帮助下,成为了科学计算的强大环境。本系列将介绍Python编程语言和使用Python进行科学计算的方法,主要包含以下内容:
| matplotlib | 3.5.3 | |
| numpy | 1.21.6 | |
| python | 3.7.16 |
python --version
- import sys
- import numpy as np
- import matplotlib
-
- print("Python 版本:", sys.version)
- print("NumPy 版本:", np.__version__)
- print("matplotlib 版本:", matplotlib.__version__)

Matplotlib是一个用于创建数据可视化的Python库。它提供了广泛的绘图选项,能够生成各种类型的图表、图形和可视化效果。下面是Matplotlib的一些主要功能:
绘图风格和类型:Matplotlib支持各种绘图风格和类型,包括线图、散点图、柱状图、饼图、等高线图、3D图等,可以根据需要选择适合的图表类型来展示和分析数据。
数据可视化:Matplotlib使得将数据转化为可视化表示变得简单,可以使用Matplotlib绘制图表来展示数据的分布、趋势、关系等,这有助于更好地理解数据和发现潜在的模式和关联。
图表自定义:Matplotlib提供了丰富的图表自定义选项,可以调整图表的标题、标签、坐标轴、线条样式、颜色等。这使得您能够创建符合特定需求和品味的高质量图表。
多子图和布局:Matplotlib允许您在单个图像中创建多个子图,以便同时展示多个相关的图表或数据视图。您可以自定义子图的布局和排列,以满足特定的展示需求。
导出图像:Matplotlib支持将图像导出为多种格式,包括PNG、JPEG、PDF、SVG等。这使得您可以方便地将生成的图表保存为文件,或嵌入到文档、报告和演示文稿中。
无论是进行科学研究、数据分析、报告撰写还是可视化展示,Matplotlib都是一个强大而灵活的工具。它广泛应用于各个领域,如数据科学、机器学习、金融分析、工程可视化等。
- import matplotlib
-
- matplotlib.rcParams['font.family'] = 'Microsoft YaHei' # 设置为微软雅黑字体
- matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 设置中文字体为黑体
若不进行该设置,会报错字体缺失
用于显示连续数据的趋势和变化
- import matplotlib.pyplot as plt
-
-
- x = [1, 2, 3, 4, 5]
- y = [2, 4, 6, 8, 10]
-
- # 绘制折线图
- plt.plot(x, y)
-
- # 添加标题和标签
- plt.title("折线图示例")
- plt.xlabel("X轴")
- plt.ylabel("Y轴")
-
- # 显示图形
- plt.show()

用于显示两个变量之间的关系和分布
- import matplotlib.pyplot as plt
-
-
- x = [1, 2, 3, 4, 5]
- y = [2, 4, 6, 8, 10]
-
- # 绘制散点图
- plt.scatter(x, y)
-
- # 添加标题和标签
- plt.title("散点图示例")
- plt.xlabel("X轴")
- plt.ylabel("Y轴")
-
- # 显示图形
- plt.show()

用于比较不同类别的数据
- import matplotlib.pyplot as plt
-
-
- x = ['A', 'B', 'C', 'D', 'E']
- y = [10, 15, 7, 12, 9]
-
- # 绘制柱状图
- plt.bar(x, y)
-
- # 添加标题和标签
- plt.title("柱状图示例")
- plt.xlabel("X轴")
- plt.ylabel("Y轴")
-
- # 显示图形
- plt.show()

用于显示数据的分布情况
- import matplotlib.pyplot as plt
-
-
- data = [1, 1, 2, 3, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9]
-
- # 绘制直方图
- plt.hist(data)
-
- # 添加标题和标签
- plt.title("直方图示例")
- plt.xlabel("数值")
- plt.ylabel("频数")
-
- # 显示图形
- plt.show()

用于显示数据的相对比例
- import matplotlib.pyplot as plt
-
-
- labels = ['A', 'B', 'C', 'D', 'E']
- sizes = [15, 30, 25, 10, 20]
-
- # 绘制饼图
- plt.pie(sizes, labels=labels, autopct='%1.1f%%')
-
- # 添加标题
- plt.title("饼图示例")
-
- # 显示图形
- plt.show()
其中,autopct参数用于显示每个扇区的百分比值
