• 【STM32&RT-Thread零基础入门】8. 基于 CubeMX 移植 RT-Thread Nano


    硬件:STM32F103ZET6、ST-LINK、usb转串口工具、4个LED灯、1个蜂鸣器、4个1k电阻、2个按键、面包板、杜邦线


    前言

    利用RT_Thread操作系统实现三种不同的LED等闪烁


    提示:以下是本篇文章正文内容,下面案例可供参考

    一、cubemx配置

    cubemx配置参考教程:
    基于 CubeMX 移植 RT-Thread Nano
    后面程序所需的引脚
    在这里插入图片描述

    二、board.c文件修改

    /*
     * Copyright (c) 2006-2019, RT-Thread Development Team
     *
     * SPDX-License-Identifier: Apache-2.0
     *
     * Change Logs:
     * Date           Author       Notes
     * 2021-05-24                  the first version
     */
    
    #include 
    #include 
    
    #include "main.h"
    #include "usart.h"// 使用cubemx产生的MX_USART1_UART_Init()
    #include "gpio.h" // 使用cubemx产生的MX_GPIO_Init()
    
    #if defined(RT_USING_USER_MAIN) && defined(RT_USING_HEAP)
    /*
     * Please modify RT_HEAP_SIZE if you enable RT_USING_HEAP
     * the RT_HEAP_SIZE max value = (sram size - ZI size), 1024 means 1024 bytes
     */
    #define RT_HEAP_SIZE (15*1024)
    static rt_uint8_t rt_heap[RT_HEAP_SIZE];
    
    RT_WEAK void *rt_heap_begin_get(void)
    {
        return rt_heap;
    }
    
    RT_WEAK void *rt_heap_end_get(void)
    {
        return rt_heap + RT_HEAP_SIZE;
    }
    #endif
    
    void SysTick_Handler(void)
    {
        rt_interrupt_enter();
        
        rt_tick_increase();
    
        rt_interrupt_leave();
    }
    
    /**
     * This function will initial your board.
     */
    void rt_hw_board_init(void)
    {
        extern void SystemClock_Config(void);
        
        HAL_Init();
        SystemClock_Config();
        SystemCoreClockUpdate();
        /* 
         * 1: OS Tick Configuration
         * Enable the hardware timer and call the rt_os_tick_callback function
         * periodically with the frequency RT_TICK_PER_SECOND. 
         */
        HAL_SYSTICK_Config(HAL_RCC_GetHCLKFreq()/RT_TICK_PER_SECOND);
    
        /* Call components board initial (use INIT_BOARD_EXPORT()) */
    	MX_GPIO_Init();//【增加】
    	
    #ifdef RT_USING_COMPONENTS_INIT
        rt_components_board_init();
    #endif
    
    #if defined(RT_USING_USER_MAIN) && defined(RT_USING_HEAP)
        rt_system_heap_init(rt_heap_begin_get(), rt_heap_end_get());
    #endif
    }
    
    #ifdef RT_USING_CONSOLE
    
    static UART_HandleTypeDef UartHandle;
    static int uart_init(void)
    {
        /* TODO: Please modify the UART port number according to your needs */
        UartHandle.Instance = USART1;//【修改为USART1】
        UartHandle.Init.BaudRate = 115200;
        UartHandle.Init.WordLength = UART_WORDLENGTH_8B;
        UartHandle.Init.StopBits = UART_STOPBITS_1;
        UartHandle.Init.Parity = UART_PARITY_NONE;
        UartHandle.Init.Mode = UART_MODE_TX_RX;
        UartHandle.Init.HwFlowCtl = UART_HWCONTROL_NONE;
        UartHandle.Init.OverSampling = UART_OVERSAMPLING_16;
    
        if (HAL_UART_Init(&UartHandle) != HAL_OK)
        {
            while (1);
        }
        return 0;
    }
    INIT_BOARD_EXPORT(uart_init);
    
    void rt_hw_console_output(const char *str)
    {
        rt_size_t i = 0, size = 0;
        char a = '\r';
    
        __HAL_UNLOCK(&UartHandle);
    
        size = rt_strlen(str);
    
        for (i = 0; i < size; i++)
        {
            if (*(str + i) == '\n')
            {
                HAL_UART_Transmit(&UartHandle, (uint8_t *)&a, 1, 1);
            }
            HAL_UART_Transmit(&UartHandle, (uint8_t *)(str + i), 1, 1);
        }
    }
    #endif
    
    #ifdef RT_USING_FINSH
    char rt_hw_console_getchar(void)
    {
        /* Note: the initial value of ch must < 0 */
        int ch = -1;
    
        if (__HAL_UART_GET_FLAG(&UartHandle, UART_FLAG_RXNE) != RESET)
        {
            ch = UartHandle.Instance->DR & 0xff;
        }
        else
        {
            rt_thread_mdelay(10);
        }
        return ch;
    }
    #endif
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135

    2.rtconfig.h文件修改

    RT-Thread Nano 的配置在 rtconfig.h 中进行,通过开关宏定义来使能或关闭某些功能,接下来对该配置文件中的宏定义进行说明。

    
    /* RT-Thread config file */
    
    #ifndef __RTTHREAD_CFG_H__
    #define __RTTHREAD_CFG_H__
    
    // <<< Use Configuration Wizard in Context Menu >>>
    // Basic Configuration
    // Maximal level of thread priority <8-256>
    //  Default: 32
    #define RT_THREAD_PRIORITY_MAX 32
    
    // OS tick per second
    //  Default: 1000   (1ms)
    #define RT_TICK_PER_SECOND 1000
    
    // Alignment size for CPU architecture data access
    //  Default: 4
    #define RT_ALIGN_SIZE 4
    
    // the max length of object name<2-16>
    //  Default: 8
    #define RT_NAME_MAX 8
    
    // Using RT-Thread components initialization
    //  Using RT-Thread components initialization
    #define RT_USING_COMPONENTS_INIT
    // 
    
    // Using user main
    //  Using user main
    #define RT_USING_USER_MAIN
    // 
    
    // the size of main thread<1-4086>
    //  Default: 512
    #define RT_MAIN_THREAD_STACK_SIZE 1024
    // 
    
    // Debug Configuration
    // enable kernel debug configuration
    //  Default: enable kernel debug configuration
    //#define RT_DEBUG
    // 
    
    // enable components initialization debug configuration<0-1>
    //  Default: 0
    #define RT_DEBUG_INIT 0
    
    // thread stack over flow detect
    //   Diable Thread stack over flow detect
    //#define RT_USING_OVERFLOW_CHECK
    // 
    // 
    
    // Hook Configuration
    // using hook
    //  using hook
    //#define RT_USING_HOOK
    // 
    
    // using idle hook
    //  using idle hook
    //#define RT_USING_IDLE_HOOK
    // 
    // 
    
    // Software timers Configuration
    //  Enables user timers
    //  Enables user timers
    //#define RT_USING_TIMER_SOFT
    // 
    
    // The priority level of timer thread <0-31>
    //  Default: 4
    #define RT_TIMER_THREAD_PRIO 4
    
    // The stack size of timer thread <0-8192>
    //  Default: 512
    #define RT_TIMER_THREAD_STACK_SIZE 512
    // 
    
    // IPC(Inter-process communication) Configuration
    // Using Semaphore
    //  Using Semaphore
    #define RT_USING_SEMAPHORE
    // 
    
    // Using Mutex
    //  Using Mutex
    //#define RT_USING_MUTEX
    // 
    
    // Using Event
    //  Using Event
    //#define RT_USING_EVENT
    // 
    
    // Using MailBox
    //  Using MailBox
    //#define RT_USING_MAILBOX
    // 
    
    // Using Message Queue
    //  Using Message Queue
    //#define RT_USING_MESSAGEQUEUE
    // 
    // 
    
    // Memory Management Configuration
    // Using Mempool Management
    //  Using Mempool Management
    //#define RT_USING_MEMPOOL
    // 
    // Dynamic Heap Management
    //  Dynamic Heap Management
    #define RT_USING_HEAP//是否使用 内存堆
    // 
    // using small memory
    //  using small memory
    #define RT_USING_SMALL_MEM// 是否使用 内存堆
    // 
    
    // using tiny size of memory
    //  using tiny size of memory
    //#define RT_USING_TINY_SIZE
    // 
    // 
    
    // Console Configuration
    // Using console
    //  Using console
    #define RT_USING_CONSOLE
    // 
    
    // the buffer size of console <1-1024>
    //  the buffer size of console
    //  Default: 128  (128Byte)
    #define RT_CONSOLEBUF_SIZE 128
    // 
    
    // Enable FinSH Configuration
    // include shell config
    //   Select this choice if you using FinSH
    //当系统加入 FinSH 组件源码后,需要在 rtconfig.h 中开启以下项
    #include "finsh_config.h"
    // 
    // 
    
    // Device Configuration
    // using device framework
    //  using device framework
    //#define RT_USING_DEVICE
    // 
    // 
    
    // <<< end of configuration section >>>
    
    #endif
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161

    三、主程序

    1. main函数

    /* USER CODE BEGIN Header */
    /**
      ******************************************************************************
      * @file           : main.c
      * @brief          : Main program body
      ******************************************************************************
      * @attention
      *
      * Copyright (c) 2023 STMicroelectronics.
      * All rights reserved.
      *
      * This software is licensed under terms that can be found in the LICENSE file
      * in the root directory of this software component.
      * If no LICENSE file comes with this software, it is provided AS-IS.
      *
      ******************************************************************************
      */
    /* USER CODE END Header */
    /* Includes ------------------------------------------------------------------*/
    #include "main.h"
    #include "usart.h"
    #include "gpio.h"
    #include 
    
    /* Private includes ----------------------------------------------------------*/
    /* USER CODE BEGIN Includes */
    
    /* USER CODE END Includes */
    
    /* Private typedef -----------------------------------------------------------*/
    /* USER CODE BEGIN PTD */
    
    /* USER CODE END PTD */
    
    /* Private define ------------------------------------------------------------*/
    /* USER CODE BEGIN PD */
    
    /* USER CODE END PD */
    
    /* Private macro -------------------------------------------------------------*/
    /* USER CODE BEGIN PM */
    
    /* USER CODE END PM */
    
    /* Private variables ---------------------------------------------------------*/
    
    /* USER CODE BEGIN PV */
    /* 栈空间地址对齐 */
    ALIGN( RT_ALIGN_SIZE )
    /* 定义一个数组,栈的空间大小就是1024*8字节 */
    rt_uint8_t rt_led1_thread_stack[1024];
    /* 初始化线程栈 */
    struct rt_thread rt_led1_thread;
     
    rt_uint8_t rt_led2_thread_stack[1024];
    /* 定义线程控制块指针 */
    rt_thread_t rt_led2_thread = RT_NULL;
    
    /* USER CODE END PV */
    
    /* Private function prototypes -----------------------------------------------*/
    void SystemClock_Config(void);
    /* USER CODE BEGIN PFP */
    
    /* USER CODE END PFP */
    
    /* Private user code ---------------------------------------------------------*/
    /* USER CODE BEGIN 0 */
    
    void led1_thread_entry(void *parameter)
    {
    	while(1)
    	{
    	    HAL_GPIO_TogglePin(LED1_GPIO_Port,LED1_Pin);
    	    rt_thread_mdelay(1000);
    	}
    }
    
    void led2_thread_entry(void *parameter)
    {
    	while(1)
    	{
    	    HAL_GPIO_TogglePin(LED2_GPIO_Port,LED2_Pin);
    	    rt_thread_mdelay(100);
    	}
    } 
    
    /* USER CODE END 0 */
    
    /**
      * @brief  The application entry point.
      * @retval int
      */
    int main(void)
    {
      /* USER CODE BEGIN 1 */
    
      /* USER CODE END 1 */
    
      /* MCU Configuration--------------------------------------------------------*/
    
      /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
      HAL_Init();
    
      /* USER CODE BEGIN Init */
    
      /* USER CODE END Init */
    
      /* Configure the system clock */
    //  SystemClock_Config();
    
      /* USER CODE BEGIN SysInit */
    
      /* USER CODE END SysInit */
    
      /* Initialize all configured peripherals */
      MX_GPIO_Init();
      MX_USART1_UART_Init();
      /* USER CODE BEGIN 2 */
    
      /**************************** 静态创建 **************************************/
      rt_err_t rst_led1;
      rst_led1 = rt_thread_init(&rt_led1_thread,
    						"led1line",
    						led1_thread_entry,
    						RT_NULL,
    						&rt_led1_thread_stack[0],
    						sizeof(rt_led1_thread_stack),
    						RT_THREAD_PRIORITY_MAX-2,
    						20);
      if(rst_led1 == RT_EOK)
      {
    		rt_thread_startup(&rt_led1_thread);
      }
      /***************************** 动态创建 ******************************************/
    	rt_led2_thread = rt_thread_create( "led2line",
    								      led2_thread_entry,
    								      RT_NULL,
    								      sizeof(rt_led2_thread_stack),
    								      RT_THREAD_PRIORITY_MAX-3,
    								      20);
    	if( rt_led2_thread != RT_NULL )
    		/* rt_thread_startup() 的形参是一个线程控制块指针,动态创建线程时返回的就是线程控制块指针,所以直接传入即可 */
    		rt_thread_startup( rt_led2_thread );
    	else
    		return -1;							
      /* USER CODE END 2 */
    
      /* Infinite loop */
      /* USER CODE BEGIN WHILE */
      while (1)
      {
        /* USER CODE END WHILE */
    
        /* USER CODE BEGIN 3 */
    	  rt_thread_mdelay(1000);
      }
      /* USER CODE END 3 */
    }
    
    /**
      * @brief System Clock Configuration
      * @retval None
      */
    void SystemClock_Config(void)
    {
      RCC_OscInitTypeDef RCC_OscInitStruct = {0};
      RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
    
      /** Initializes the RCC Oscillators according to the specified parameters
      * in the RCC_OscInitTypeDef structure.
      */
      RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI;
      RCC_OscInitStruct.HSIState = RCC_HSI_ON;
      RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT;
      RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
      if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
      {
        Error_Handler();
      }
    
      /** Initializes the CPU, AHB and APB buses clocks
      */
      RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                                  |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
      RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_HSI;
      RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
      RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1;
      RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
    
      if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_0) != HAL_OK)
      {
        Error_Handler();
      }
    }
    
    /* USER CODE BEGIN 4 */
    
    /* USER CODE END 4 */
    
    /**
      * @brief  This function is executed in case of error occurrence.
      * @retval None
      */
    void Error_Handler(void)
    {
      /* USER CODE BEGIN Error_Handler_Debug */
      /* User can add his own implementation to report the HAL error return state */
      __disable_irq();
      while (1)
      {
      }
      /* USER CODE END Error_Handler_Debug */
    }
    
    #ifdef  USE_FULL_ASSERT
    /**
      * @brief  Reports the name of the source file and the source line number
      *         where the assert_param error has occurred.
      * @param  file: pointer to the source file name
      * @param  line: assert_param error line source number
      * @retval None
      */
    void assert_failed(uint8_t *file, uint32_t line)
    {
      /* USER CODE BEGIN 6 */
      /* User can add his own implementation to report the file name and line number,
         ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
      /* USER CODE END 6 */
    }
    #endif /* USE_FULL_ASSERT */
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232

    2. task函数

    #include "main.h"
    #include "rtthread.h"
    #define DBG_TAG "main"
    #define DBG_LVL DBG_LOG
    #include 
    
    #define THREAD1_PRIORITY  27    
    #define THREAD_STACK_SIZE 512  
    #define THREAD_TIMESLICE  5    
     
    
    ALIGN(RT_ALIGN_SIZE)
    rt_thread_t result = RT_NULL;
    
    
    
    
    static void rt_led1_flash_entry(void *parameter)
    {
        while(1)
        {
    		HAL_GPIO_WritePin(LED3_GPIO_Port,LED3_Pin,GPIO_PIN_SET);
    		rt_thread_mdelay(500);
    		HAL_GPIO_WritePin(LED3_GPIO_Port,LED3_Pin,GPIO_PIN_RESET);
    		rt_thread_mdelay(500);
        }
    }
    
    
    
    int rt_user_thread_entry(void)
    {
    
        
        result = rt_thread_create("led3line", rt_led1_flash_entry,
                                  NULL,
                                  THREAD_STACK_SIZE,
                                  THREAD1_PRIORITY,
                                  THREAD_TIMESLICE);
        if (result != RT_NULL) 
        {
            rt_thread_startup(result);
        }
        else
        {
            LOG_D("can not create LED thread!");
    		return -1;
        }
    
    
    }
    INIT_APP_EXPORT(rt_user_thread_entry);
    
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54

    总结

    以上便是基于 CubeMX 移植 RT-Thread Nano,然后实现3个不同LED灯的闪烁的程序

  • 相关阅读:
    机器学习实战:Python基于LASSO回归进行正则化(十二)
    15:00面试,15:06就出来了,问的问题有点变态。。。
    k8s学习--利用helm部署应用mysql,加深helm的理解
    springBoot中使用easyExcel导出
    C++二分查找算法:132模式枚举3简洁版
    Vue+Element-UI+Springboot权限管理系统
    爱普生L125X_L325X系列打印机Wi-Fi配置方法(Smart Panel)
    Java练习题2020-3
    【C++ 程序设计】第 3 章:类和对象进阶
    分享实时股票python接口的部分功能运行过程
  • 原文地址:https://blog.csdn.net/weixin_43002939/article/details/132694477