参考资料:https://blog.csdn.net/wsp_1138886114/article/details/90415190
- import cv2 as cv
- import numpy as np
- import matplotlib.pyplot as plt
-
-
- img = cv.imread("../SampleImages/chinease_tower.jpg", cv.IMREAD_COLOR)
- plt.imshow(img[:,:,::-1])
-
-
- #转换为灰度图
- img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
- plt.imshow(img_gray, cmap=plt.cm.gray)
-
-
- #转换为灰度图
- img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
- plt.imshow(img_gray, cmap=plt.cm.gray)
-
- #焦点检测
- #1. cornerHarris函数要求的输入是float32,首先通过numpy.float32进行转换
- img_gray = np.float32(img_gray)
- #2. 使用cornerHarris进行焦点检测
- # cv.(src=gray, blockSize, ksize, k, dst=None, borderType=None)
- # src - float32类型的灰度图像数据
- # blockSize - 焦点检测的窗口大小
- # ksize: sobel算子卷积核大小
- # k: Harris算法中的的k值,[0.04,0.06]
- # 参考资料:https://blog.csdn.net/wsp_1138886114/article/details/90415190
- results = cv.cornerHarris(img_gray, 2, 3, 0.04)
- #设置阈值,大于阈值的角点用绿色标注
- img[results > 0.001 * results.max()] = [0, 255, 0]
- #图像显示
- plt.imshow(img[:,:,::-1])



