码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • 机械臂6D姿态检测(RGB、RGBD、雷达)综述


    1、单目:

    (1)GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation (GDR-Net:用于单目6D物体姿态估计的几何引导直接回归网络)

    (2)Self-supervised 6D Object Pose Estimation for Robot Manipulation(机器人操纵的自监督6D物体姿态估计)

    (3)Region Pixel Voting Network (RPVNet) for 6D Pose Estimation from Monocular Image(单目图像6D姿态估计的区域像素投票网络RPVNet)

    (4)End-to-End 6DoF Pose Estimation From Monocular RGB Images(单目RGB图像的端到端6DoF姿态估计)

    (5)Self6D: Self-Supervised Monocular 6D Object Pose Estimation(Self6D:自监督单眼6D物体姿态估计)

    (6)Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation(遮挡感知自监督单眼6D物体姿态估计)

    (7)CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular Images With Self-Supervised Learning (CPS++:利用自监督学习改进单目图像的类级6D姿态和形状估计)

    2、RGBD:

    (1)Robust 6D Object Pose Estimation by Learning RGB-D Features(基于RGB-D特征的鲁棒6D目标姿态估计)

    (2)DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion (DenseFusion:基于迭代密集融合的6D目标姿态估计)

    (3)Texture-less object detection and 6D pose estimation in RGB-D images (RGB-D图像中的无纹理目标检测和6D姿态估计)

    (4)Multi-view 6D Object Pose Estimation and Camera Motion Planning using RGBD Images(使用RGBD图像的多视图6D对象姿态估计和相机运动规划)

    (5)Learning 6D Pose Estimation from Synthetic RGBD Images for Robotic Applications(用于机器人应用的合成RGBD图像学习6D姿态估计)

    3、红外热成像:

    (1)Semantic Segmentation for Thermal Images: A Comparative Survey(热图像语义分割的比较研究)

    (2)A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation(基于语义分割的红外可见图像融合生成对抗网络)

    (3)ARTSeg: Employing Attention for Thermal images Semantic Segmentation(ARTSeg:关注热图像语义分割)

    (4)MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation(MS-UDA:用于热图像语义分割的多光谱无监督域自适应)

    4、激光雷达:

    (1)ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature(ECPC-ICP:一种融合路边激光雷达点云和道路特征的6D车辆姿态估计方法)

    (2)PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud(PointRCNN:从点云生成和检测3D对象建议)

     (3)PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection(PV-RCNN:用于3D对象检测的点体素特征集抽象)

    (4)PointPillars: Fast Encoders for Object Detection from Point Clouds(PointPillars:用于点云目标检测的快速编码器)

    5、混合:

    (1)CL3D: Camera-LiDAR 3D Object Detection With Point Feature Enhancement and Point-Guided Fusion(CL3D:具有点特征增强和点引导融合的摄像机LiDAR 3D目标检测)

    (2)CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection(CLOC:用于3D目标检测的摄像机LiDAR目标候选融合)

    (3)CramNet: Camera-Radar Fusion with Ray-Constrained Cross-Attention for Robust 3D Object Detection(CramNet:基于光线约束交叉关注的相机-雷达融合用于鲁棒三维目标检测)


    1、单目:

    (1)GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation (GDR-Net:用于单目6D物体姿态估计的几何引导直接回归网络)

    https://openaccess.thecvf.com/content/CVPR2021/papers/Wang_GDR-Net_Geometry-Guided_Direct_Regression_Network_for_Monocular_6D_Object_Pose_CVPR_2021_paper.pdf

    (2)Self-supervised 6D Object Pose Estimation for Robot Manipulation(机器人操纵的自监督6D物体姿态估计)

    https://arxiv.org/pdf/1909.10159.pdf

    (3)Region Pixel Voting Network (RPVNet) for 6D Pose Estimation from Monocular Image(单目图像6D姿态估计的区域像素投票网络RPVNet)

    Region Pixel Voting Network (RPVNet) for 6D Pose Estimation from Monocular Image

    (4)End-to-End 6DoF Pose Estimation From Monocular RGB Images(单目RGB图像的端到端6DoF姿态估计)

    End-to-End 6DoF Pose Estimation From Monocular RGB Images | IEEE Journals & Magazine | IEEE Xplore

    (5)Self6D: Self-Supervised Monocular 6D Object Pose Estimation(Self6D:自监督单眼6D物体姿态估计)

    https://arxiv.org/pdf/2004.06468.pdf

    (6)Occlusion-Aware Self-Supervised Monocular 6D Object Pose Estimation(遮挡感知自监督单眼6D物体姿态估计)

    https://arxiv.org/pdf/2203.10339.pdf

    (7)CPS++: Improving Class-level 6D Pose and Shape Estimation From Monocular Images With Self-Supervised Learning (CPS++:利用自监督学习改进单目图像的类级6D姿态和形状估计)

    https://arxiv.org/pdf/2003.05848.pdf

    2、RGBD:

    (1)Robust 6D Object Pose Estimation by Learning RGB-D Features(基于RGB-D特征的鲁棒6D目标姿态估计)

    https://arxiv.org/pdf/2003.00188.pdf

    (2)DenseFusion: 6D Object Pose Estimation by Iterative Dense Fusion (DenseFusion:基于迭代密集融合的6D目标姿态估计)

    https://openaccess.thecvf.com/content_CVPR_2019/papers/Wang_DenseFusion_6D_Object_Pose_Estimation_by_Iterative_Dense_Fusion_CVPR_2019_paper.pdf

    (3)Texture-less object detection and 6D pose estimation in RGB-D images (RGB-D图像中的无纹理目标检测和6D姿态估计)

    https://www.sciencedirect.com/science/article/abs/pii/S0921889016308442

    直接查看链接:Sci-Hub | Texture-less object detection and 6D pose estimation in RGB-D images | 10.1016/j.robot.2017.06.003

    (4)Multi-view 6D Object Pose Estimation and Camera Motion Planning using RGBD Images(使用RGBD图像的多视图6D对象姿态估计和相机运动规划)

    https://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w31/Sock_Multi-View_6D_Object_ICCV_2017_paper.pdf

    (5)Learning 6D Pose Estimation from Synthetic RGBD Images for Robotic Applications(用于机器人应用的合成RGBD图像学习6D姿态估计)

    https://arxiv.org/pdf/2208.14288.pdf

    3、红外热成像:

    (1)Semantic Segmentation for Thermal Images: A Comparative Survey(热图像语义分割的比较研究)

    https://openaccess.thecvf.com/content/CVPR2022W/PBVS/papers/Kutuk_Semantic_Segmentation_for_Thermal_Images_A_Comparative_Survey_CVPRW_2022_paper.pdf

    (2)A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation(基于语义分割的红外可见图像融合生成对抗网络)

    Entropy | Free Full-Text | A Generative Adversarial Network for Infrared and Visible Image Fusion Based on Semantic Segmentation

    (3)ARTSeg: Employing Attention for Thermal images Semantic Segmentation(ARTSeg:关注热图像语义分割)

    https://arxiv.org/pdf/2111.15257.pdf

    (4)MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation(MS-UDA:用于热图像语义分割的多光谱无监督域自适应)

    MS-UDA: Multi-Spectral Unsupervised Domain Adaptation for Thermal Image Semantic Segmentation | IEEE Journals & Magazine | IEEE Xplore


    4、激光雷达:

    (1)ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature(ECPC-ICP:一种融合路边激光雷达点云和道路特征的6D车辆姿态估计方法)

    Sensors | Free Full-Text | ECPC-ICP: A 6D Vehicle Pose Estimation Method by Fusing the Roadside Lidar Point Cloud and Road Feature

    (2)PointRCNN: 3D Object Proposal Generation and Detection from Point Cloud(PointRCNN:从点云生成和检测3D对象建议)

    https://openaccess.thecvf.com/content_CVPR_2019/papers/Shi_PointRCNN_3D_Object_Proposal_Generation_and_Detection_From_Point_Cloud_CVPR_2019_paper.pdf

     (3)PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection(PV-RCNN:用于3D对象检测的点体素特征集抽象)

    https://openaccess.thecvf.com/content_CVPR_2020/papers/Shi_PV-RCNN_Point-Voxel_Feature_Set_Abstraction_for_3D_Object_Detection_CVPR_2020_paper.pdf

    (4)PointPillars: Fast Encoders for Object Detection from Point Clouds(PointPillars:用于点云目标检测的快速编码器)

    https://openaccess.thecvf.com/content_CVPR_2019/papers/Lang_PointPillars_Fast_Encoders_for_Object_Detection_From_Point_Clouds_CVPR_2019_paper.pdf


    5、混合:

    (1)CL3D: Camera-LiDAR 3D Object Detection With Point Feature Enhancement and Point-Guided Fusion(CL3D:具有点特征增强和点引导融合的摄像机LiDAR 3D目标检测)

    https://eprints.gla.ac.uk/266475/2/266475.pdf

    (2)CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection(CLOC:用于3D目标检测的摄像机LiDAR目标候选融合)

    https://arxiv.org/pdf/2009.00784.pdf

    (3)CramNet: Camera-Radar Fusion with Ray-Constrained Cross-Attention for Robust 3D Object Detection(CramNet:基于光线约束交叉关注的相机-雷达融合用于鲁棒三维目标检测)

    https://arxiv.org/pdf/2210.09267.pdf

  • 相关阅读:
    Go 通过 cobra 快速构建命令行应用
    前端使用 Konva 实现可视化设计器(3)- 单选、多选、选择框
    【算法面试必刷Java版十】两个链表的第一个公共结点
    windows下安装IntelliJIDEA
    Python:Flask使用全局变量g传递数据
    LibreOffice编辑excel文档如何在单元格中输入手动换行符
    传奇登录器打不开的四种原因
    【Python】PySpark 数据计算 ④ ( RDD#filter 方法 - 过滤 RDD 中的元素 | RDD#distinct 方法 - 对 RDD 中的元素去重 )
    一种实现Spring动态数据源切换的方法
    grafana报错This panel requires Angular (deprecated)
  • 原文地址:https://blog.csdn.net/Callme_TeacherPi/article/details/128205823
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号