
在本文中,我们将看到两个没有多线程的 Python 代码示例,用于从摄像头读取视频帧。我们将看到使用/不使用多线程获得的 FPS 的差异。
线程是进程中的一个执行单元。多线程是指通过在线程之间快速切换对 CPU 的控制(称为上下文切换)来并发执行多个线程。在我们的示例中,我们将看到多线程通过提高 FPS(每秒帧数)实现更快的实时视频处理。
以下代码片段显示了如何使用python 中的threading模块创建线程:
- # importing the threading module
- import threading
-
- # importing the time module
- import time
-
- # Function to print "Hello", however, the function sleeps
- # for 2 seconds at the 11th iteration
- def print_hello():
- for i in range(20):
- if i == 10:
- time.sleep(2)
- print("Hello")
-
- # Function to print numbers till a given number
- def print_numbers(num):
- for i in range(num+1):
- print(i)
-
- # Creating the threads. Target is set to the name of the
- # function that neeeds to be executed inside the thread and
- # args are the arguments to be supplied to the function that
-
- # needs to be executed.
- print("Greetings from the main thread.")
- thread1 = threading.Thread(target = print_hello, args = ())
- thread2 = threading.Thread(target = print_numbers, args = (10,))
-
- # Starting the two threads
- thread1.start()
- thread2.start()
- print("It's the main thread again!")
让我们通过跟踪代码的执行来尝试理解输出:
主线程执行。打印“Greetings from the main thread”,创建thread1和thread2并启动线程。
发生上下文切换,开始执行thread1。
在前十次迭代之后,thread1进入睡眠状态,thread2开始执行,在下一次上下文切换之前完成。
现在,主线程获得了 CPU 的控制权并打印出“It’s the main thread again!”
另一个上下文切换发生,thread2恢复执行并完成。
由于主线程没有更多指令要执行,因此程序终止。
如果需要阻塞主线程,直到thread1和thread2完成执行,该怎么办?
thread.join()会派上用场,因为它会阻塞调用线程,直到调用其 join() 方法的线程终止:
- # importing the threading module
- import threading
-
- # importing the time module
- import time
- # Function to print "Hello", however, the function sleeps
-
- # for 2 seconds at the 11th iteration
- def print_hello():
- for i in range(20):
- if i == 10:
- time.sleep(2)
- print("Hello")
-
- # Function to print numbers till a given number
- def print_numbers(num):
- for i in range(num+1):
- print(i)
-
- # Creating the threads. Target is set to the name of the
- # function that neeeds to be executed inside the thread and
- # args are the arguments to be supplied to the function that
- # needs to be executed.
- print("Greetings from the main thread.")
- thread1 = threading.Thread(target = print_hello, args = ())
- thread2 = threading.Thread(target = print_numbers, args = (10,))
-
- # Starting the two threads
- thread1.start()
- thread2.start()
- thread1.join()
- thread2.join()
- print("It's the main thread again!")
- print("Threads 1 and 2 have finished executing.")
视频处理代码分为两部分:从摄像头读取下一个可用帧并对帧进行视频处理,例如运行深度学习模型进行人脸识别等。
读取下一帧并在没有多线程的程序中按顺序进行处理。程序等待下一帧可用,然后再对其进行必要的处理。读取帧所需的时间主要与请求、等待和将下一个视频帧从相机传输到内存所需的时间有关。对视频帧进行计算所花费的时间,无论是在 CPU 还是 GPU 上,占据了视频处理所花费的大部分时间。
在具有多线程的程序中,读取下一帧并处理它不需要是顺序的。当一个线程执行读取下一帧的任务时,主线程可以使用 CPU 或 GPU 来处理最后读取的帧。这样,通过重叠两个任务,可以减少读取和处理帧的总时间。
- # importing required libraries
- import cv2
- import time
-
- # opening video capture stream
- vcap = cv2.VideoCapture(0)
- if vcap.isOpened() is False :
- print("[Exiting]: Error accessing webcam stream.")
- exit(0)
- fps_input_stream = int(vcap.get(5))
- print("FPS of webcam hardware/input stream: {}".format(fps_input_stream))
- grabbed, frame = vcap.read() # reading single frame for initialization/ hardware warm-up
-
- # processing frames in input stream
- num_frames_processed = 0
- start = time.time()
- while True :
- grabbed, frame = vcap.read()
- if grabbed is False :
- print('[Exiting] No more frames to read')
- break
-
- # adding a delay for simulating time taken for processing a frame
- delay = 0.03 # delay value in seconds. so, delay=1 is equivalent to 1 second
- time.sleep(delay)
- num_frames_processed += 1
- cv2.imshow('frame' , frame)
- key = cv2.waitKey(1)
- if key == ord('q'):
- break
- end = time.time()
-
- # printing time elapsed and fps
- elapsed = end-start
- fps = num_frames_processed/elapsed
- print("FPS: {} , Elapsed Time: {} , Frames Processed: {}".format(fps, elapsed, num_frames_processed))
-
- # releasing input stream , closing all windows
- vcap.release()
- cv2.destroyAllWindows()
- # importing required libraries
- import cv2
- import time
- from threading import Thread # library for implementing multi-threaded processing
-
- # defining a helper class for implementing multi-threaded processing
- class WebcamStream :
- def __init__(self, stream_id=0):
- self.stream_id = stream_id # default is 0 for primary camera
-
- # opening video capture stream
- self.vcap = cv2.VideoCapture(self.stream_id)
- if self.vcap.isOpened() is False :
- print("[Exiting]: Error accessing webcam stream.")
- exit(0)
- fps_input_stream = int(self.vcap.get(5))
- print("FPS of webcam hardware/input stream: {}".format(fps_input_stream))
-
- # reading a single frame from vcap stream for initializing
- self.grabbed , self.frame = self.vcap.read()
- if self.grabbed is False :
- print('[Exiting] No more frames to read')
- exit(0)
-
- # self.stopped is set to False when frames are being read from self.vcap stream
- self.stopped = True
-
- # reference to the thread for reading next available frame from input stream
- self.t = Thread(target=self.update, args=())
- self.t.daemon = True # daemon threads keep running in the background while the program is executing
-
- # method for starting the thread for grabbing next available frame in input stream
- def start(self):
- self.stopped = False
- self.t.start()
-
- # method for reading next frame
- def update(self):
- while True :
- if self.stopped is True :
- break
- self.grabbed , self.frame = self.vcap.read()
- if self.grabbed is False :
- print('[Exiting] No more frames to read')
- self.stopped = True
- break
- self.vcap.release()
-
- # method for returning latest read frame
- def read(self):
- return self.frame
-
- # method called to stop reading frames
- def stop(self):
- self.stopped = True
-
- # initializing and starting multi-threaded webcam capture input stream
- webcam_stream = WebcamStream(stream_id=0) # stream_id = 0 is for primary camera
- webcam_stream.start()
-
- # processing frames in input stream
- num_frames_processed = 0
- start = time.time()
- while True :
- if webcam_stream.stopped is True :
- break
- else :
- frame = webcam_stream.read()
-
- # adding a delay for simulating time taken for processing a frame
- delay = 0.03 # delay value in seconds. so, delay=1 is equivalent to 1 second
- time.sleep(delay)
- num_frames_processed += 1
- cv2.imshow('frame' , frame)
- key = cv2.waitKey(1)
- if key == ord('q'):
- break
- end = time.time()
- webcam_stream.stop() # stop the webcam stream
-
- # printing time elapsed and fps
- elapsed = end-start
- fps = num_frames_processed/elapsed
- print("FPS: {} , Elapsed Time: {} , Frames Processed: {}".format(fps, elapsed, num_frames_processed))
-
- # closing all windows
- cv2.destroyAllWindows()
https://github.com/SihabSahariar/Multi-threading-OpenCV-
https://stackoverflow.com/questions/55099413/python-opencv-streaming-from-camera-multithreading-timestamps
https://stackoverflow.com/questions/55828451/video-streaming-from-ip-camera-in-python-using-opencv-cv2-videocapture
https://stackoverflow.com/questions/58592291/how-to-capture-multiple-camera-streams-with-opencv
https://stackoverflow.com/questions/58293187/opencv-real-time-streaming-video-capture-is-slow-how-to-drop-frames-or-get-sync
https://stackoverflow.com/questions/55141315/storing-rtsp-stream-as-video-file-with-opencv-videowriter
https://stackoverflow.com/questions/29317262/opencv-video-saving-in-python/71624807#71624807
https://stackoverflow.com/questions/72120491/python-opencv-multiprocessing-cv2-videocapture-mp4
https://github.com/PyImageSearch/imutils/tree/master/imutils/video
https://www.pyimagesearch.com/2015/12/21/increasing-webcam-fps-with-python-and-opencv/
https://forum.opencv.org/t/videocapture-opens-video-sources-by-multi-thread/8045
☆ END ☆
如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 woshicver」,每日朋友圈更新一篇高质量博文。
↓扫描二维码添加小编↓
