• 计算机程序设计艺术习题解答(Excercise 1.2.3-30~34题)


    30. [M23 ] (J. Binet, 1812.) 不使用归纳法,证明等式  (\sum _{j=1}^{n}a_{j}x_{j})(\sum _{j=1}^{n}b_{j}y_{j})=(\sum _{j=1}^{n}a_{j}y_{j})(\sum _{j=1}^{n}b_{j}x_{j})+\sum _{1\leq j< k\leq n}{(a_{j}b_{k}-a_{k}b_{j})(x_{j}y_{k}-x_{k}y_{j})}

    证:

    这个公式是一个非常重要且基础的通用公式,稍后可以看到它的一系列推论,用处很大。

    首先根据正文里公式 (4),用于和式乘积的分配律 (R(i)ai)(S(j)bj)=R(i)S(j)aibj" role="presentation" style="position: relative;">(R(i)ai)(S(j)bj)=R(i)S(j)aibj ,我们有

    (j=1najxj)(j=1nbjyj)=j=1nk=1najxjbkyk=1jn1knajxjbkyk=1j,knajbkxjyk" role="presentation" style="position: relative;">(j=1najxj)(j=1nbjyj)=j=1nk=1najxjbkyk=1jn1knajxjbkyk=1j,knajbkxjyk  ,

    同理有 (j=1najyj)(j=1nbjxj)=1j,knajbkxkyj" role="presentation" style="position: relative;">(j=1najyj)(j=1nbjxj)=1j,knajbkxkyj

    上下两个等式相减,得到

    (j=1najxj)(j=1nbjyj)(j=1najyj)(j=1nbjxj)=1j,kn(ajbkxjykajbkxkyj)" role="presentation" style="position: relative;">(j=1najxj)(j=1nbjyj)(j=1najyj)(j=1nbjxj)=1j,kn(ajbkxjykajbkxkyj)

    1j<kn(ajbkxjykajbkxkyj)+1k<jn(ajbkxjykajbkxkyj)" role="presentation" style="position: relative;">1j<kn(ajbkxjykajbkxkyj)+1k<jn(ajbkxjykajbkxkyj)  ( 1j=kn" role="presentation" style="position: relative;">1j=kn 时和式为零)

    1j<kn(ajbkxjykajbkxkyj)+1j<kn(akbjxkyjajbkxkyj)" role="presentation" style="position: relative;">1j<kn(ajbkxjykajbkxkyj)+1j<kn(akbjxkyjajbkxkyj) (第二个和式中 jk 互换)

    1j<kn(ajbk(xjykxkyj))1j<kn(akbj(xjykxkyj))" role="presentation" style="position: relative;">1j<kn(ajbk(xjykxkyj))1j<kn(akbj(xjykxkyj))

    1j<kn(ajbkakbj)(xjykxkyj)" role="presentation" style="position: relative;">1j<kn(ajbkakbj)(xjykxkyj)       由此等式 (\sum _{j=1}^{n}a_{j}x_{j})(\sum _{j=1}^{n}b_{j}y_{j})=(\sum _{j=1}^{n}a_{j}y_{j})(\sum _{j=1}^{n}b_{j}x_{j})+\sum _{1\leq j< k\leq n}{(a_{j}b_{k}-a_{k}b_{j})(x_{j}y_{k}-x_{k}y_{j})} 得证。

    一个重要的特例是:当 ω1,...,ωn,z1,...,zn" role="presentation" style="position: relative;">ω1,...,ωn,z1,...,zn 为任意复数时,我们令 aj=ωj,bj=zj¯,xj=ωj¯,yj=zj" role="presentation" style="position: relative;">aj=ωj,bj=zj¯,xj=ωj¯,yj=zj ,就得到等式 (j=1n|ωj|2)(j=1n|zj|2)=|j=1nωjzj|2+1j<kn|ωjzk¯ωkzj¯|2" role="presentation" style="position: relative;">(j=1n|ωj|2)(j=1n|zj|2)=|j=1nωjzj|2+1j<kn|ωjzk¯ωkzj¯|2

    证明:等式左边   (j=1najxj)(j=1nbjyj)=(j=1nωjωj¯)(j=1nzjzj¯)=(j=1n|ωj|2)(j=1n|zj|2)" role="presentation" style="position: relative;">(j=1najxj)(j=1nbjyj)=(j=1nωjωj¯)(j=1nzjzj¯)=(j=1n|ωj|2)(j=1n|zj|2)

    等式右边  (j=1najyj)(j=1nbjxj)+1j<kn(ajbkakbj)(xjykxkyj)" role="presentation" style="position: relative;">(j=1najyj)(j=1nbjxj)+1j<kn(ajbkakbj)(xjykxkyj)

    =  (j=1nωjzj)(j=1nωj¯zj¯)+1j<kn(ωjzk¯ωkzj¯)(ωj¯zkωk¯zj)" role="presentation" style="position: relative;">(j=1nωjzj)(j=1nωj¯zj¯)+1j<kn(ωjzk¯ωkzj¯)(ωj¯zkωk¯zj)

    =  |j=1nωjzj|2+1j<kn|ωjzk¯ωkzj¯|2" role="presentation" style="position: relative;">|j=1nωjzj|2+1j<kn|ωjzk¯ωkzj¯|2              

     注:    (j=1nωjzj)" role="presentation" style="position: relative;">(j=1nωjzj) 与 (j=1nωj¯zj¯)" role="presentation" style="position: relative;">(j=1nωj¯zj¯) 互为共轭,(ωjzk¯ωkzj¯)" role="presentation" style="position: relative;">(ωjzk¯ωkzj¯) 与 (ωj¯zkωk¯zj)" role="presentation" style="position: relative;">(ωj¯zkωk¯zj) 也是互为共轭关系。

    所有的 (|ωjzk¯ωkzj¯|2)" role="presentation" style="position: relative;">(|ωjzk¯ωkzj¯|2) 项都是非负的,所以根据 Binet 公式就可以推出著名的柯西-施瓦茨(Cauchy-Schwarz) 不等式 (j=1n|ωj|2)(j=1n|zj|2)|j=1nωjzj|2" role="presentation" style="position: relative;">(j=1n|ωj|2)(j=1n|zj|2)|j=1nωjzj|2 。

    31. 【M20] 利用 Binet 公式将和式 1j<kn(ujuk)(vjvk)" role="presentation" style="position: relative;">1j<kn(ujuk)(vjvk) 表示为由 j=1nujvj,j=1nujandj=1nvj" role="presentation" style="position: relative;">j=1nujvj,j=1nujandj=1nvj 组成的式子。

    解:

    在 Binet 公式 (\sum _{j=1}^{n}a_{j}x_{j})(\sum _{j=1}^{n}b_{j}y_{j})=(\sum _{j=1}^{n}a_{j}y_{j})(\sum _{j=1}^{n}b_{j}x_{j})+\sum _{1\leq j< k\leq n}{(a_{j}b_{k}-a_{k}b_{j})(x_{j}y_{k}-x_{k}y_{j})} 中,令 aj=uj,bk=1,xj=vj,yk=1" role="presentation" style="position: relative;">aj=uj,bk=1,xj=vj,yk=1 ,就得到 1j<kn(ujuk)(vjvk)=(j=1nujvj)(j=1n11)(j=1nuj1)(j=1nvj1)" role="presentation" style="position: relative;">1j<kn(ujuk)(vjvk)=(j=1nujvj)(j=1n11)(j=1nuj1)(j=1nvj1)

    n(j=1nujvj)(j=1nuj)(j=1nvj)" role="presentation" style="position: relative;">n(j=1nujvj)(j=1nuj)(j=1nvj)

    当 uj" role="presentation" style="position: relative;">uj 和 vj" role="presentation" style="position: relative;">vj 同为单调递增数列时,即 u1u2...un" role="presentation" style="position: relative;">u1u2...un 且 v1v2...vn" role="presentation" style="position: relative;">v1v2...vn 时,对任何 j, k, 只要满足 1j<kn" role="presentation" style="position: relative;">1j<kn ,都有 (ujuk)(vjvk)0" role="presentation" style="position: relative;">(ujuk)(vjvk)0 ,这样就可以推导出 1j<kn(ujuk)(vjvk)0(j=1nuj)(j=1nvj)n(j=1nujvj)" role="presentation" style="position: relative;">1j<kn(ujuk)(vjvk)0(j=1nuj)(j=1nvj)n(j=1nujvj) ,这就是著名的切比雪夫单调不等式(Chebyshev's monotonic inquality)

    33. [M30] One evening Dr. Matrix discovered some formulas that might even be classed as more remarkable than those of exercise 20:

    1(ab)(ac)+1(ba)(bc)+1(ca)(cb)=0," role="presentation" style="position: relative;">1(ab)(ac)+1(ba)(bc)+1(ca)(cb)=0,

    \frac{a}{(a-b)(a-c)}+\frac{b}{(b-a)(b-c)}+\frac{c}{(c-a)(c-b)}=0,

    a2(ab)(ac)+b2(ba)(bc)+c2(ca)(cb)=1," role="presentation" style="position: relative;">a2(ab)(ac)+b2(ba)(bc)+c2(ca)(cb)=1,

    \frac{a^3}{(a-b)(a-c)}+\frac{b^3}{(b-a)(b-c)}+\frac{c^3}{(c-a)(c-b)}=a+b+c .

    Prove that these formulas are a special case of a general law; let x1,x2,...,xn" role="presentation" style="position: relative;">x1,x2,...,xn be distinct numbers, and show that

    j=1n(xjr/1kn,kj(xjxk))={0,if0r<n1;1,ifr=n1;j=1nxj,ifr=n." role="presentation" style="position: relative;">j=1n(xjr/1kn,kj(xjxk))={0,if0r<n1;1,ifr=n1;j=1nxj,ifr=n.

    证:

    对于 0rn1" role="presentation" style="position: relative;">0rn1 的情况的证明如下:

    j=1n(xjr/1kn,kj(xjxk))" role="presentation" style="position: relative;">j=1n(xjr/1kn,kj(xjxk)) 可改写为两个和式的差:1xnxn1(j=1nxjr(xjxn1)1kn,kj(xjxk)j=1nxjr(xjxn)1kn,kj(xjxk))" role="presentation" style="position: relative;">1xnxn1(j=1nxjr(xjxn1)1kn,kj(xjxk)j=1nxjr(xjxn)1kn,kj(xjxk)) ,每个和式都和要证明的和式是同样的形式,但都只包含 n-1 项(第一个和式少了 j=n-1 时那项,第二个少了 j=n 时那项),这就启发我们对 n 使用数学归纳法来证明。

    Base case: n = 3 时,根据前面的公式显然有

    1(ab)(ac)+1(ba)(bc)+1(ca)(cb)=0," role="presentation" style="position: relative;">1(ab)(ac)+1(ba)(bc)+1(ca)(cb)=0,

    \frac{a}{(a-b)(a-c)}+\frac{b}{(b-a)(b-c)}+\frac{c}{(c-a)(c-b)}=0, 

    a2(ab)(ac)+b2(ba)(bc)+c2(ca)(cb)=1," role="presentation" style="position: relative;">a2(ab)(ac)+b2(ba)(bc)+c2(ca)(cb)=1, 要证明的公式成立。

    当 n4" role="presentation" style="position: relative;">n4 时,由前面 j=1n(xjr/1kn,kj(xjxk))" role="presentation" style="position: relative;">j=1n(xjr/1kn,kj(xjxk)) 可以改写为两个同样形式的 n-1 项和式的差,显然可以从 n-1 项时成立推导出 n 项时公式成立。

    最后是比较麻烦的 r = n 时的情况。

    由于对任意一个特定的 j1jn" role="presentation" style="position: relative;">1jn) ,k=1n(xjxk)" role="presentation" style="position: relative;">k=1n(xjxk) 都等于零,因此有等式 0=j=1nk=1n(xjxk)1kn,kj(xjxk)=j=1nxjn(x1+...+xn)xjn1+P(xj)1kn,kj(xjxk)" role="presentation" style="position: relative;">0=j=1nk=1n(xjxk)1kn,kj(xjxk)=j=1nxjn(x1+...+xn)xjn1+P(xj)1kn,kj(xjxk) ,其中的 P(xj)" role="presentation" style="position: relative;">P(xj) 是关于 xj" role="presentation" style="position: relative;">xj 的最高次幂为 xjn2" role="presentation" style="position: relative;">xjn2 的多项式。这样可以得出 j=1nxjn1kn,kj(xjxk)=j=1n(x1+...+xn)xjn11kn,kj(xjxk)+j=1nP(xj)1kn,kj(xjxk)" role="presentation" style="position: relative;">j=1nxjn1kn,kj(xjxk)=j=1n(x1+...+xn)xjn11kn,kj(xjxk)+j=1nP(xj)1kn,kj(xjxk) 而根据前面已证明的结论,j=1nP(xj)1kn,kj(xjxk)=0" role="presentation" style="position: relative;">j=1nP(xj)1kn,kj(xjxk)=0 , (因为对所有 0rn2" role="presentation" style="position: relative;">0rn2 ,j=1nxjr1kn,kj(xjxk)" role="presentation" style="position: relative;">j=1nxjr1kn,kj(xjxk) 的值都为零。)而 j=1n(x1+...+xn)xjn11kn,kj(xjxk)=x1+...+xn" role="presentation" style="position: relative;">j=1n(x1+...+xn)xjn11kn,kj(xjxk)=x1+...+xn ,这样就证明了 r=n 时的情况:j=1nxjn1kn,kj(xjxk)=x1+...+xn" role="presentation" style="position: relative;">j=1nxjn1kn,kj(xjxk)=x1+...+xn 。

    34. [M25] 证明如下等式成立:

    \sum _{k=1}^{n}{\frac{\prod _{1\leq r\leq n, r\neq m}(x+k-r)}{\prod _{1\leq r\leq n,r\neq m}(k-r)}}=1, 假定其中 1\leq m\leq n 且 x" role="presentation" style="position: relative;">x 为任意实数。例如,当 n=4" role="presentation" style="position: relative;">n=4 且 m=2" role="presentation" style="position: relative;">m=2 时,x(x2)(x3)(1)(2)(3)+(x+1)(x1)(x2)(1)(1)(2)+(x+2)x(x1)(2)(1)(1)+(x+3)(x+1)x(3)(2)(1)=1" role="presentation" style="position: relative;">x(x2)(x3)(1)(2)(3)+(x+1)(x1)(x2)(1)(1)(2)+(x+2)x(x1)(2)(1)(1)+(x+3)(x+1)x(3)(2)(1)=1

    证:

    和33题的公式对照一下就可以找出类似的模式:令xk=k,xr=r" role="presentation" style="position: relative;">xk=k,xr=r ,分子 1rn,rm(x+kr)=kn1+P(k)" role="presentation" style="position: relative;">1rn,rm(x+kr)=kn1+P(k) ,其中的 P(k)" role="presentation" style="position: relative;">P(k) 是最高次幂为 k^{n-2} 的关于 k" role="presentation" style="position: relative;">k 的多项式,套用 33 题的公式证明过程,k=1nP(k)1rn,rk(kr)=0" role="presentation" style="position: relative;">k=1nP(k)1rn,rk(kr)=0 ,这样就可以直接得出 k=1n1rn,rm(x+kr)1rn,rm(kr)=k=1nkn11rn,rm(kr)=1" role="presentation" style="position: relative;">k=1n1rn,rm(x+kr)1rn,rm(kr)=k=1nkn11rn,rm(kr)=1​​​​​​​

  • 相关阅读:
    智慧城市标准化白皮书(2022版)发布
    vue3 传统 组件之间通信
    数电学习(十一、D/A和A/D转换)
    STM32CubeMX教程17 DAC - 输出三角波噪声波
    436. 寻找右区间--LeetCode_二分
    都说了能不动就别动,非要去调整,出生产事故了吧
    java 实现建造者模式
    QT Android环境搭建 及 解决“Platfrom tools installed”等系列配置问题( 附QT、JDK、SDK、NDK网盘链接 )
    C++ Qt开发:SqlTableModel映射组件应用
    【运维】Ubuntu换硬盘扩容
  • 原文地址:https://blog.csdn.net/u012439764/article/details/126711018