30. [M23 ] (J. Binet, 1812.) 不使用归纳法,证明等式 
证:
这个公式是一个非常重要且基础的通用公式,稍后可以看到它的一系列推论,用处很大。
首先根据正文里公式 (4),用于和式乘积的分配律 (∑R(i)ai)(∑S(j)bj)=∑R(i)∑S(j)aibj" role="presentation" style="position: relative;">(∑R(i)ai)(∑S(j)bj)=∑R(i)∑S(j)aibj ,我们有
(∑j=1najxj)(∑j=1nbjyj)=∑j=1n∑k=1najxjbkyk=∑1≤j≤n∑1≤k≤najxjbkyk=∑1≤j,k≤najbkxjyk" role="presentation" style="position: relative;">(∑nj=1ajxj)(∑nj=1bjyj)=∑nj=1∑nk=1ajxjbkyk=∑1≤j≤n∑1≤k≤najxjbkyk=∑1≤j,k≤najbkxjyk ,
同理有 (∑j=1najyj)(∑j=1nbjxj)=∑1≤j,k≤najbkxkyj" role="presentation" style="position: relative;">(∑nj=1ajyj)(∑nj=1bjxj)=∑1≤j,k≤najbkxkyj
上下两个等式相减,得到
(∑j=1najxj)(∑j=1nbjyj)−(∑j=1najyj)(∑j=1nbjxj)=∑1≤j,k≤n(ajbkxjyk−ajbkxkyj)" role="presentation" style="position: relative;">(∑nj=1ajxj)(∑nj=1bjyj)−(∑nj=1ajyj)(∑nj=1bjxj)=∑1≤j,k≤n(ajbkxjyk−ajbkxkyj)
= ∑1≤j<k≤n(ajbkxjyk−ajbkxkyj)+∑1≤k<j≤n(ajbkxjyk−ajbkxkyj)" role="presentation" style="position: relative;">∑1≤j<k≤n(ajbkxjyk−ajbkxkyj)+∑1≤k<j≤n(ajbkxjyk−ajbkxkyj) ( 1≤j=k≤n" role="presentation" style="position: relative;">1≤j=k≤n 时和式为零)
= ∑1≤j<k≤n(ajbkxjyk−ajbkxkyj)+∑1≤j<k≤n(akbjxkyj−ajbkxkyj)" role="presentation" style="position: relative;">∑1≤j<k≤n(ajbkxjyk−ajbkxkyj)+∑1≤j<k≤n(akbjxkyj−ajbkxkyj) (第二个和式中 j 与 k 互换)
= ∑1≤j<k≤n(ajbk(xjyk−xkyj))−∑1≤j<k≤n(akbj(xjyk−xkyj))" role="presentation" style="position: relative;">∑1≤j<k≤n(ajbk(xjyk−xkyj))−∑1≤j<k≤n(akbj(xjyk−xkyj))
= ∑1≤j<k≤n(ajbk−akbj)(xjyk−xkyj)" role="presentation" style="position: relative;">∑1≤j<k≤n(ajbk−akbj)(xjyk−xkyj) 由此等式
得证。
一个重要的特例是:当 ω1,...,ωn,z1,...,zn" role="presentation" style="position: relative;">ω1,...,ωn,z1,...,zn 为任意复数时,我们令 aj=ωj,bj=zj¯,xj=ωj¯,yj=zj" role="presentation" style="position: relative;">aj=ωj,bj=zj¯,xj=ωj¯,yj=zj ,就得到等式 (∑j=1n|ωj|2)(∑j=1n|zj|2)=|∑j=1nωjzj|2+∑1≤j<k≤n|ωjzk¯−ωkzj¯|2" role="presentation" style="position: relative;">(∑nj=1|ωj|2)(∑nj=1|zj|2)=∣∣∑nj=1ωjzj∣∣2+∑1≤j<k≤n|ωjzk¯−ωkzj¯|2
证明:等式左边 (∑j=1najxj)(∑j=1nbjyj)=(∑j=1nωjωj¯)(∑j=1nzjzj¯)=(∑j=1n|ωj|2)(∑j=1n|zj|2)" role="presentation" style="position: relative;">(∑nj=1ajxj)(∑nj=1bjyj)=(∑nj=1ωjωj¯)(∑nj=1zjzj¯)=(∑nj=1|ωj|2)(∑nj=1|zj|2)
等式右边 (∑j=1najyj)(∑j=1nbjxj)+∑1≤j<k≤n(ajbk−akbj)(xjyk−xkyj)" role="presentation" style="position: relative;">(∑nj=1ajyj)(∑nj=1bjxj)+∑1≤j<k≤n(ajbk−akbj)(xjyk−xkyj)
= (∑j=1nωjzj)(∑j=1nωj¯zj¯)+∑1≤j<k≤n(ωjzk¯−ωkzj¯)(ωj¯zk−ωk¯zj)" role="presentation" style="position: relative;">(∑nj=1ωjzj)(∑nj=1ωj¯zj¯)+∑1≤j<k≤n(ωjzk¯−ωkzj¯)(ωj¯zk−ωk¯zj)
= |∑j=1nωjzj|2+∑1≤j<k≤n|ωjzk¯−ωkzj¯|2" role="presentation" style="position: relative;">∣∣∑nj=1ωjzj∣∣2+∑1≤j<k≤n|ωjzk¯−ωkzj¯|2
注: (∑j=1nωjzj)" role="presentation" style="position: relative;">(∑nj=1ωjzj) 与 (∑j=1nωj¯zj¯)" role="presentation" style="position: relative;">(∑nj=1ωj¯zj¯) 互为共轭,(ωjzk¯−ωkzj¯)" role="presentation" style="position: relative;">(ωjzk¯−ωkzj¯) 与 (ωj¯zk−ωk¯zj)" role="presentation" style="position: relative;">(ωj¯zk−ωk¯zj) 也是互为共轭关系。
所有的 (|ωjzk¯−ωkzj¯|2)" role="presentation" style="position: relative;">(|ωjzk¯−ωkzj¯|2) 项都是非负的,所以根据 Binet 公式就可以推出著名的柯西-施瓦茨(Cauchy-Schwarz) 不等式 (∑j=1n|ωj|2)(∑j=1n|zj|2)≥|∑j=1nωjzj|2" role="presentation" style="position: relative;">(∑nj=1|ωj|2)(∑nj=1|zj|2)≥∣∣∑nj=1ωjzj∣∣2 。
31. 【M20] 利用 Binet 公式将和式 ∑1≤j<k≤n(uj−uk)(vj−vk)" role="presentation" style="position: relative;">∑1≤j<k≤n(uj−uk)(vj−vk) 表示为由 ∑j=1nujvj,∑j=1nujand∑j=1nvj" role="presentation" style="position: relative;">∑nj=1ujvj,∑nj=1ujand∑nj=1vj 组成的式子。
解:
在 Binet 公式
中,令 aj=uj,bk=1,xj=vj,yk=1" role="presentation" style="position: relative;">aj=uj,bk=1,xj=vj,yk=1 ,就得到 ∑1≤j<k≤n(uj−uk)(vj−vk)=(∑j=1nujvj)(∑j=1n1⋅1)−(∑j=1nuj⋅1)(∑j=1nvj⋅1)" role="presentation" style="position: relative;">∑1≤j<k≤n(uj−uk)(vj−vk)=(∑nj=1ujvj)(∑nj=11⋅1)−(∑nj=1uj⋅1)(∑nj=1vj⋅1)
= n(∑j=1nujvj)−(∑j=1nuj)(∑j=1nvj)" role="presentation" style="position: relative;">n(∑nj=1ujvj)−(∑nj=1uj)(∑nj=1vj)
当 uj" role="presentation" style="position: relative;">uj 和 vj" role="presentation" style="position: relative;">vj 同为单调递增数列时,即 u1≤u2≤...≤un" role="presentation" style="position: relative;">u1≤u2≤...≤un 且 v1≤v2≤...≤vn" role="presentation" style="position: relative;">v1≤v2≤...≤vn 时,对任何 j, k, 只要满足 1≤j<k≤n" role="presentation" style="position: relative;">1≤j<k≤n ,都有 (uj−uk)(vj−vk)≥0" role="presentation" style="position: relative;">(uj−uk)(vj−vk)≥0 ,这样就可以推导出 ∑1≤j<k≤n(uj−uk)(vj−vk)≥0⇒(∑j=1nuj)(∑j=1nvj)≤n(∑j=1nujvj)" role="presentation" style="position: relative;">∑1≤j<k≤n(uj−uk)(vj−vk)≥0⇒(∑nj=1uj)(∑nj=1vj)≤n(∑nj=1ujvj) ,这就是著名的切比雪夫单调不等式(Chebyshev's monotonic inquality)。
33. [M30] One evening Dr. Matrix discovered some formulas that might even be classed as more remarkable than those of exercise 20:
1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b)=0," role="presentation" style="position: relative;">1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b)=0,

a2(a−b)(a−c)+b2(b−a)(b−c)+c2(c−a)(c−b)=1," role="presentation" style="position: relative;">a2(a−b)(a−c)+b2(b−a)(b−c)+c2(c−a)(c−b)=1,

Prove that these formulas are a special case of a general law; let x1,x2,...,xn" role="presentation" style="position: relative;">x1,x2,...,xn be distinct numbers, and show that
∑j=1n(xjr/∏1≤k≤n,k≠j(xj−xk))={0,if0≤r<n−1;1,ifr=n−1;∑j=1nxj,ifr=n." role="presentation" style="position: relative;">∑nj=1(xrj/∏1≤k≤n,k≠j(xj−xk))=⎧⎩⎨⎪⎪0,1,∑nj=1xj,ififif0≤r<n−1;r=n−1;r=n.
证:
对于 0≤r≤n−1" role="presentation" style="position: relative;">0≤r≤n−1 的情况的证明如下:
∑j=1n(xjr/∏1≤k≤n,k≠j(xj−xk))" role="presentation" style="position: relative;">∑nj=1(xrj/∏1≤k≤n,k≠j(xj−xk)) 可改写为两个和式的差:1xn−xn−1(∑j=1nxjr(xj−xn−1)∏1≤k≤n,k≠j(xj−xk)−∑j=1nxjr(xj−xn)∏1≤k≤n,k≠j(xj−xk))" role="presentation" style="position: relative;">1xn−xn−1(∑nj=1xrj(xj−xn−1)∏1≤k≤n,k≠j(xj−xk)−∑nj=1xrj(xj−xn)∏1≤k≤n,k≠j(xj−xk)) ,每个和式都和要证明的和式是同样的形式,但都只包含 n-1 项(第一个和式少了 j=n-1 时那项,第二个少了 j=n 时那项),这就启发我们对 n 使用数学归纳法来证明。
Base case: n = 3 时,根据前面的公式显然有
1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b)=0," role="presentation" style="position: relative;">1(a−b)(a−c)+1(b−a)(b−c)+1(c−a)(c−b)=0,
a2(a−b)(a−c)+b2(b−a)(b−c)+c2(c−a)(c−b)=1," role="presentation" style="position: relative;">a2(a−b)(a−c)+b2(b−a)(b−c)+c2(c−a)(c−b)=1, 要证明的公式成立。
当 n≥4" role="presentation" style="position: relative;">n≥4 时,由前面 ∑j=1n(xjr/∏1≤k≤n,k≠j(xj−xk))" role="presentation" style="position: relative;">∑nj=1(xrj/∏1≤k≤n,k≠j(xj−xk)) 可以改写为两个同样形式的 n-1 项和式的差,显然可以从 n-1 项时成立推导出 n 项时公式成立。
最后是比较麻烦的 r = n 时的情况。
由于对任意一个特定的 j(1≤j≤n" role="presentation" style="position: relative;">1≤j≤n) ,∏k=1n(xj−xk)" role="presentation" style="position: relative;">∏nk=1(xj−xk) 都等于零,因此有等式 0=∑j=1n∏k=1n(xj−xk)∏1≤k≤n,k≠j(xj−xk)=∑j=1nxjn−(x1+...+xn)xjn−1+P(xj)∏1≤k≤n,k≠j(xj−xk)" role="presentation" style="position: relative;">0=∑nj=1∏nk=1(xj−xk)∏1≤k≤n,k≠j(xj−xk)=∑nj=1xnj−(x1+...+xn)xn−1j+P(xj)∏1≤k≤n,k≠j(xj−xk) ,其中的 P(xj)" role="presentation" style="position: relative;">P(xj) 是关于 xj" role="presentation" style="position: relative;">xj 的最高次幂为 xjn−2" role="presentation" style="position: relative;">xn−2j 的多项式。这样可以得出 ∑j=1nxjn∏1≤k⩽n,k≠j(xj−xk)=∑j=1n(x1+...+xn)xjn−1∏1≤k⩽n,k≠j(xj−xk)+∑j=1nP(xj)∏1≤k⩽n,k≠j(xj−xk)" role="presentation" style="position: relative;">∑nj=1xnj∏1≤k⩽n,k≠j(xj−xk)=∑nj=1(x1+...+xn)xn−1j∏1≤k⩽n,k≠j(xj−xk)+∑nj=1P(xj)∏1≤k⩽n,k≠j(xj−xk) 而根据前面已证明的结论,∑j=1nP(xj)∏1≤k⩽n,k≠j(xj−xk)=0" role="presentation" style="position: relative;">∑nj=1P(xj)∏1≤k⩽n,k≠j(xj−xk)=0 , (因为对所有 0≤r⩽n−2" role="presentation" style="position: relative;">0≤r⩽n−2 ,∑j=1nxjr∏1≤k≤n,k≠j(xj−xk)" role="presentation" style="position: relative;">∑nj=1xrj∏1≤k≤n,k≠j(xj−xk) 的值都为零。)而 ∑j=1n(x1+...+xn)xjn−1∏1≤k≤n,k≠j(xj−xk)=x1+...+xn" role="presentation" style="position: relative;">∑nj=1(x1+...+xn)xn−1j∏1≤k≤n,k≠j(xj−xk)=x1+...+xn ,这样就证明了 r=n 时的情况:∑j=1nxjn∏1≤k≤n,k≠j(xj−xk)=x1+...+xn" role="presentation" style="position: relative;">∑nj=1xnj∏1≤k≤n,k≠j(xj−xk)=x1+...+xn 。
34. [M25] 证明如下等式成立:
假定其中
且 x" role="presentation" style="position: relative;">x 为任意实数。例如,当 n=4" role="presentation" style="position: relative;">n=4 且 m=2" role="presentation" style="position: relative;">m=2 时,x(x−2)(x−3)(−1)(−2)(−3)+(x+1)(x−1)(x−2)(1)(−1)(−2)+(x+2)x(x−1)(2)(1)(−1)+(x+3)(x+1)x(3)(2)(1)=1" role="presentation" style="position: relative;">x(x−2)(x−3)(−1)(−2)(−3)+(x+1)(x−1)(x−2)(1)(−1)(−2)+(x+2)x(x−1)(2)(1)(−1)+(x+3)(x+1)x(3)(2)(1)=1
证:
和33题的公式对照一下就可以找出类似的模式:令xk=k,xr=r" role="presentation" style="position: relative;">xk=k,xr=r ,分子 ∏1≤r≤n,r≠m(x+k−r)=kn−1+P(k)" role="presentation" style="position: relative;">∏1≤r≤n,r≠m(x+k−r)=kn−1+P(k) ,其中的 P(k)" role="presentation" style="position: relative;">P(k) 是最高次幂为
的关于 k" role="presentation" style="position: relative;">k 的多项式,套用 33 题的公式证明过程,∑k=1nP(k)∏1≤r≤n,r≠k(k−r)=0" role="presentation" style="position: relative;">∑nk=1P(k)∏1≤r≤n,r≠k(k−r)=0 ,这样就可以直接得出 ∑k=1n∏1≤r≤n,r≠m(x+k−r)∏1≤r≤n,r≠m(k−r)=∑k=1nkn−1∏1≤r≤n,r≠m(k−r)=1" role="presentation" style="position: relative;">∑nk=1∏1≤r≤n,r≠m(x+k−r)∏1≤r≤n,r≠m(k−r)=∑nk=1kn−1∏1≤r≤n,r≠m(k−r)=1