码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • Egoroff‘s Theorem


    Theorem

    Assume E E E has finite Lebesgue measure. Let { f n } \{f_n\} {fn​} be a sequence of Lebesgue measurable functions on E E E that converges pointwise on E E E to a Real-Valued function f f f. Then for each ϵ > 0 \epsilon>0 ϵ>0, there is a closed set F F F contained in E E E for which

    { f n } → f  uniformly on  F  and  m ( E − F ) < ϵ \{f_n\}\rightarrow f \text{ uniformly on } F \text{ and } m(E-F)<\epsilon {fn​}→f uniformly on F and m(E−F)<ϵ

    proof

    1. Under the assumptions of Egoroff’s Theorem, for each η>0 and δ>0, there is a Lebesgue measurable subset A of E and an index N for which |fₙ-f|<η on A for all n ≥ N and m(E-A)<δ.

    2. By step 1, for each n ∈ N n\in \mathbb{N} n∈N, ϵ > 0 \epsilon>0 ϵ>0, let δ = ϵ / 2 n + 1 \delta=\epsilon/2^{n+1} δ=ϵ/2n+1, η = 1 / n \eta=1/n η=1/n, there is a Lebesgue measurable subset A n A_n An​ of E E E and an index N ( n ) N(n) N(n) s.t.

      ∣ f k − f ∣ < η |f_k-f|<\eta ∣fk​−f∣<η

      on A n A_n An​ for all k > N ( n ) k>N(n) k>N(n) and m ( E − A n ) < ϵ / 2 n + 1 m(E-A_n)<\epsilon/2^{n+1} m(E−An​)<ϵ/2n+1

    3. Define

      A = ⋂ n = 1 ∞ A n A=\bigcap_{n=1}^{\infty}A_n A=n=1⋂∞​An​

    4. By De Morgan’s Identities,the countably subadditivity of measure and m ( E − A n ) < ϵ / 2 n + 1 m(E-A_n)<\epsilon/2^{n+1} m(E−An​)<ϵ/2n+1,

      m ( E − A ) = m ( ⋃ n = 1 ∞ [ E − A n ] ) ⩽ ∑ n = 1 ∞ m ( E − A n ) ⩽ ∑ n = 1 ∞ ϵ / 2 n + 1 = ϵ 2 m(E-A)=m \left( \bigcup_{n=1}^{\infty}[E-A_{n}] \right)\leqslant \sum_{n=1}^{\infty}m(E-A_n)\leqslant \sum_{n=1}^{\infty}\epsilon/2^{n+1}=\frac{\epsilon}{2} m(E−A)=m(n=1⋃∞​[E−An​])⩽n=1∑∞​m(E−An​)⩽n=1∑∞​ϵ/2n+1=2ϵ​

    5. We claim that { f n } \{f_n\} {fn​} converges to f f f uniformly on A A A.

    6. By step 2, ∀ ϵ > 0 \forall\epsilon>0 ∀ϵ>0 there are 1 n 0 < ϵ \frac{1}{n_0}<\epsilon n0​1​<ϵ, A n 0 A_{n_0} An0​​ and N ( n 0 ) N(n_0) N(n0​) s.t.

      ∣ f k − f ∣ < 1 / n 0 |f_k-f|<1/n_0 ∣fk​−f∣<1/n0​

      on A n 0 A_{n_0} An0​​ for all k ⩾ N ( n 0 ) k\geqslant N(n_0) k⩾N(n0​).

    7. Since A ⊂ A n 0 A\subset A_{n_0} A⊂An0​​ and step 6, { f n } \{f_n\} {fn​} converges to f f f uniformly on A A A.

      ∀ ϵ > 0 , ∃ N ∈ N ( n > N → ∣ f k − f ∣ < ϵ ) \forall \epsilon>0,\exists N\in \mathbb{N}(n>N\rightarrow |f_k-f|<\epsilon) ∀ϵ>0,∃N∈N(n>N→∣fk​−f∣<ϵ)

      on A A A.

    8. Since A A A is Lebesgue measurable and inner approximation by closed sets and union of a countable collection of closed sets, we may choose a closed set F ⊂ A F\subset A F⊂A for which m ( A − F ) < ϵ / 2 m(A-F)<\epsilon/2 m(A−F)<ϵ/2.

    9. Thus m ( E − F ) < ϵ m(E-F)<\epsilon m(E−F)<ϵ and { f n } → f \{f_n\}\rightarrow f {fn​}→f uniformly on F F F.

    ::END::

  • 相关阅读:
    pytorch下载离线包的网址
    左倾红黑树的go语言实现
    dds:subscribe
    [附源码]java毕业设计儿童资源教育网站
    LeetCode每日一题——Single Number
    网络安全:保护你的系统
    第十二章网络管理
    3.BeautifulSoup库
    (Note)中文EI检索期刊目录
    剑指Offer05-替换空格
  • 原文地址:https://blog.csdn.net/luixiao1220/article/details/127546859
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号